BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 35456781)

  • 1. Metabolic Engineering of
    Schwardmann LS; Dransfeld AK; Schäffer T; Wendisch VF
    Microorganisms; 2022 Mar; 10(4):. PubMed ID: 35456781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the production of dipicolinic acid in E. coli.
    McClintock MK; Fahnhorst GW; Hoye TR; Zhang K
    Metab Eng; 2018 Jul; 48():208-217. PubMed ID: 29792931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
    Pérez-García F; Max Risse J; Friehs K; Wendisch VF
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28169491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources.
    Pérez-García F; Ziert C; Risse JM; Wendisch VF
    J Biotechnol; 2017 Sep; 258():59-68. PubMed ID: 28478080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing
    Han T; Kim GB; Lee SY
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30328-30334. PubMed ID: 33199604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan.
    Veldmann KH; Minges H; Sewald N; Lee JH; Wendisch VF
    J Biotechnol; 2019 Feb; 291():7-16. PubMed ID: 30579891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate.
    Werner F; Schwardmann LS; Siebert D; Rückert-Reed C; Kalinowski J; Wirth MT; Hofer K; Takors R; Wendisch VF; Blombach B
    Biotechnol Biofuels Bioprod; 2023 Jul; 16(1):116. PubMed ID: 37464396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid.
    Pauli S; Kohlstedt M; Lamber J; Weiland F; Becker J; Wittmann C
    Metab Eng; 2023 May; 77():100-117. PubMed ID: 36931556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.
    Kim HT; Khang TU; Baritugo KA; Hyun SM; Kang KH; Jung SH; Song BK; Park K; Oh MK; Kim GB; Kim HU; Lee SY; Park SJ; Joo JC
    Metab Eng; 2019 Jan; 51():99-109. PubMed ID: 30144560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentative Production of l-2-Hydroxyglutarate by Engineered
    Prell C; Burgardt A; Meyer F; Wendisch VF
    Front Bioeng Biotechnol; 2020; 8():630476. PubMed ID: 33585425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonsterile l-Lysine Fermentation Using Engineered Phosphite-Grown
    Lei M; Peng X; Sun W; Zhang D; Wang Z; Yang Z; Zhang C; Yu B; Niu H; Ying H; Ouyang P; Liu D; Chen Y
    ACS Omega; 2021 Apr; 6(15):10160-10167. PubMed ID: 34056170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Production of the Dicarboxylic Acid Glutarate by
    Pérez-García F; Jorge JMP; Dreyszas A; Risse JM; Wendisch VF
    Front Microbiol; 2018; 9():2589. PubMed ID: 30425699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.
    Xu J; Han M; Zhang J; Guo Y; Zhang W
    Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
    Pérez-García F; Peters-Wendisch P; Wendisch VF
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8075-90. PubMed ID: 27345060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose.
    Li Z; Dong Y; Liu Y; Cen X; Liu D; Chen Z
    Metab Eng; 2022 Mar; 70():79-88. PubMed ID: 35038553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering
    Wang Y; Zheng J; Xue Y; Yu B
    J Agric Food Chem; 2024 Mar; 72(12):6500-6508. PubMed ID: 38470347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering.
    Hoffmann SL; Kohlstedt M; Jungmann L; Hutter M; Poblete-Castro I; Becker J; Wittmann C
    Metab Eng; 2021 Sep; 67():293-307. PubMed ID: 34314893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formamide-based production of amines by metabolically engineering Corynebacterium glutamicum.
    Schwardmann LS; Wu T; Dransfeld AK; Lindner SN; Wendisch VF
    Appl Microbiol Biotechnol; 2023 Jul; 107(13):4245-4260. PubMed ID: 37246985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.