BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 35456781)

  • 21. Coproduction of cell-bound and secreted value-added compounds: Simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum.
    Henke NA; Wiebe D; Pérez-García F; Peters-Wendisch P; Wendisch VF
    Bioresour Technol; 2018 Jan; 247():744-752. PubMed ID: 30060409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing β-alanine production from glucose in genetically modified Corynebacterium glutamicum by metabolic pathway engineering.
    Wang JY; Rao ZM; Xu JZ; Zhang WG
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9153-9166. PubMed ID: 34837493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.
    Baritugo KA; Kim HT; David Y; Choi JI; Hong SH; Jeong KJ; Choi JH; Joo JC; Park SJ
    Appl Microbiol Biotechnol; 2018 May; 102(9):3915-3937. PubMed ID: 29557518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum.
    Dong X; Zhao Y; Hu J; Li Y; Wang X
    Enzyme Microb Technol; 2016 Nov; 93-94():70-78. PubMed ID: 27702487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.
    Rohles CM; Gießelmann G; Kohlstedt M; Wittmann C; Becker J
    Microb Cell Fact; 2016 Sep; 15(1):154. PubMed ID: 27618862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
    Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z
    Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Progress on Chemical Production From Non-food Renewable Feedstocks Using
    Zhang B; Jiang Y; Li Z; Wang F; Wu XY
    Front Bioeng Biotechnol; 2020; 8():606047. PubMed ID: 33392171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
    Buschke N; Becker J; Schäfer R; Kiefer P; Biedendieck R; Wittmann C
    Biotechnol J; 2013 May; 8(5):557-70. PubMed ID: 23447448
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Zhang J; Qian F; Dong F; Wang Q; Yang J; Jiang Y; Yang S
    ACS Synth Biol; 2020 Jul; 9(7):1897-1906. PubMed ID: 32627539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production.
    Xu JZ; Yu HB; Han M; Liu LM; Zhang WG
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):937-949. PubMed ID: 30937555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid.
    Xu G; Zha J; Cheng H; Ibrahim MHA; Yang F; Dalton H; Cao R; Zhu Y; Fang J; Chi K; Zheng P; Zhang X; Shi J; Xu Z; Gross RA; Koffas MAG
    Metab Eng; 2019 Dec; 56():39-49. PubMed ID: 31449877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose.
    Jorge JM; Nguyen AQ; Pérez-García F; Kind S; Wendisch VF
    Biotechnol Bioeng; 2017 Apr; 114(4):862-873. PubMed ID: 27800627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
    Jojima T; Noburyu R; Sasaki M; Tajima T; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1165-72. PubMed ID: 25421564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic and process engineering for microbial production of protocatechuate with Corynebacterium glutamicum.
    Labib M; Görtz J; Brüsseler C; Kallscheuer N; Gätgens J; Jupke A; Marienhagen J; Noack S
    Biotechnol Bioeng; 2021 Nov; 118(11):4414-4427. PubMed ID: 34343343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational reformation of Corynebacterium glutamicum for producing L-lysine by one-step fermentation from raw corn starch.
    Li CL; Ruan HZ; Liu LM; Zhang WG; Xu JZ
    Appl Microbiol Biotechnol; 2022 Jan; 106(1):145-160. PubMed ID: 34870736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Industrial production of L-lysine in Corynebacterium glutamicum: Progress and prospects.
    Liu J; Xu JZ; Rao ZM; Zhang WG
    Microbiol Res; 2022 Sep; 262():127101. PubMed ID: 35803058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids.
    Kallscheuer N; Marienhagen J
    Microb Cell Fact; 2018 May; 17(1):70. PubMed ID: 29753327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced L-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase.
    Dong J; Kan B; Liu H; Zhan M; Wang S; Xu G; Han R; Ni Y
    Appl Biochem Biotechnol; 2020 Jul; 191(3):955-967. PubMed ID: 31950445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of γ-Aminobutyrate (GABA) in Recombinant
    Son J; Baritugo KA; Sohn YJ; Kang KH; Kim HT; Joo JC; Park SJ
    ACS Omega; 2022 Aug; 7(33):29106-29115. PubMed ID: 36033683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.