These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 35456848)

  • 1. The transcription factors Hsf1 and Msn2 of thermotolerant
    Li P; Fu X; Zhang L; Zhang Z; Li J; Li S
    Biotechnol Biofuels; 2017; 10():289. PubMed ID: 29213328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic profiling and integrated analysis with transcriptomic data bring new insights in the stress responses of
    Li P; Fu X; Chen M; Zhang L; Li S
    Biotechnol Biofuels; 2019; 12():49. PubMed ID: 30899329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic analysis reveals hub genes and pathways in response to acetic acid stress in Kluyveromyces marxianus during high-temperature ethanol fermentation.
    Li Y; Hou S; Ren Z; Fu S; Wang S; Chen M; Dang Y; Li H; Li S; Li P
    Stress Biol; 2023 Jul; 3(1):26. PubMed ID: 37676394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering TATA-binding protein Spt15 to improve ethanol tolerance and production in
    Li P; Fu X; Li S; Zhang L
    Biotechnol Biofuels; 2018; 11():207. PubMed ID: 30061929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production.
    Arora R; Behera S; Sharma NK; Kumar S
    Front Microbiol; 2015; 6():889. PubMed ID: 26388844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snapshot of the Probiotic Potential of
    Ullah M; Rizwan M; Raza A; Xia Y; Han J; Ma Y; Chen H
    Foods; 2023 Nov; 12(23):. PubMed ID: 38231794
    [No Abstract]   [Full Text] [Related]  

  • 7. Transcriptome analysis of Kluyveromyces marxianus under succinic acid stress and development of robust strains.
    Zeng DW; Yang YQ; Wang Q; Zhang FL; Zhang MD; Liao S; Liu ZQ; Fan YC; Liu CG; Zhang L; Zhao XQ
    Appl Microbiol Biotechnol; 2024 Apr; 108(1):293. PubMed ID: 38592508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting an ancient stress resistance trait syndrome in the compost yeast
    Christensen KE; Duarte A; Ma Z; Edwards JL; Brem RB
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systems-level understanding of ethanol-induced stresses and adaptation in E. coli.
    Cao H; Wei D; Yang Y; Shang Y; Li G; Zhou Y; Ma Q; Xu Y
    Sci Rep; 2017 Mar; 7():44150. PubMed ID: 28300180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis and functional development of membrane-based microbial metabolism.
    Yamada M
    Biosci Biotechnol Biochem; 2024 Apr; 88(5):461-474. PubMed ID: 38366612
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Pal U; Pal S; Vij S
    Indian J Microbiol; 2023 Dec; 63(4):483-493. PubMed ID: 38031616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass.
    Dolpatcha S; Phong HX; Thanonkeo S; Klanrit P; Yamada M; Thanonkeo P
    Sci Rep; 2023 Nov; 13(1):21000. PubMed ID: 38017261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species.
    Fernandes T; Osório C; Sousa MJ; Franco-Duarte R
    J Fungi (Basel); 2023 Jan; 9(2):. PubMed ID: 36836301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential of multistress tolerant yeast, Saccharomycodes ludwigii, for second-generation bioethanol production.
    Pilap W; Thanonkeo S; Klanrit P; Thanonkeo P
    Sci Rep; 2022 Dec; 12(1):22062. PubMed ID: 36543886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary Adaptation by Repetitive Long-Term Cultivation with Gradual Increase in Temperature for Acquiring Multi-Stress Tolerance and High Ethanol Productivity in
    Pattanakittivorakul S; Tsuzuno T; Kosaka T; Murata M; Kanesaki Y; Yoshikawa H; Limtong S; Yamada M
    Microorganisms; 2022 Apr; 10(4):. PubMed ID: 35456848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient conversion of xylose to ethanol by stress-tolerant Kluyveromyces marxianus BUNL-21.
    Nitiyon S; Keo-Oudone C; Murata M; Lertwattanasakul N; Limtong S; Kosaka T; Yamada M
    Springerplus; 2016; 5():185. PubMed ID: 27026881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and transcriptome analyses of Kluyveromyces marxianus reveal adaptive traits in stress response.
    Sandoval-Nuñez D; Romero-Gutiérrez T; Gómez-Márquez C; Gshaedler A; Arellano-Plaza M; Amaya-Delgado L
    Appl Microbiol Biotechnol; 2023 Feb; 107(4):1421-1438. PubMed ID: 36651929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation based on integration of RNA-Seq and metabolite data.
    Fu X; Li P; Zhang L; Li S
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2715-2729. PubMed ID: 30673809
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.