BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 35457002)

  • 1. Molecular Dynamics and Evolution of Centromeres in the Genus Equus.
    Piras FM; Cappelletti E; Santagostino M; Nergadze SG; Giulotto E; Raimondi E
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Satellite-Free Centromere in
    Piras FM; Cappelletti E; Abdelgadir WA; Salamon G; Vignati S; Santagostino M; Sola L; Nergadze SG; Giulotto E
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robertsonian Fusion and Centromere Repositioning Contributed to the Formation of Satellite-free Centromeres During the Evolution of Zebras.
    Cappelletti E; Piras FM; Sola L; Santagostino M; Abdelgadir WA; Raimondi E; Lescai F; Nergadze SG; Giulotto E
    Mol Biol Evol; 2022 Aug; 39(8):. PubMed ID: 35881460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Unique DNA Sequences Underlying Equine Centromeres.
    Giulotto E; Raimondi E; Sullivan KF
    Prog Mol Subcell Biol; 2017; 56():337-354. PubMed ID: 28840244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Birth, evolution, and transmission of satellite-free mammalian centromeric domains.
    Nergadze SG; Piras FM; Gamba R; Corbo M; Cerutti F; McCarter JGW; Cappelletti E; Gozzo F; Harman RM; Antczak DF; Miller D; Scharfe M; Pavesi G; Raimondi E; Sullivan KF; Giulotto E
    Genome Res; 2018 Jun; 28(6):789-799. PubMed ID: 29712753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncoupling of satellite DNA and centromeric function in the genus Equus.
    Piras FM; Nergadze SG; Magnani E; Bertoni L; Attolini C; Khoriauli L; Raimondi E; Giulotto E
    PLoS Genet; 2010 Feb; 6(2):e1000845. PubMed ID: 20169180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite DNA at the Centromere is Dispensable for Segregation Fidelity.
    Roberti A; Bensi M; Mazzagatti A; Piras FM; Nergadze SG; Giulotto E; Raimondi E
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31226862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeatless and repeat-based centromeres in potato: implications for centromere evolution.
    Gong Z; Wu Y; Koblízková A; Torres GA; Wang K; Iovene M; Neumann P; Zhang W; Novák P; Buell CR; Macas J; Jiang J
    Plant Cell; 2012 Sep; 24(9):3559-74. PubMed ID: 22968715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The major horse satellite DNA family is associated with centromere competence.
    Cerutti F; Gamba R; Mazzagatti A; Piras FM; Cappelletti E; Belloni E; Nergadze SG; Raimondi E; Giulotto E
    Mol Cytogenet; 2016; 9():35. PubMed ID: 27123044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analyses of Gibbon Centromeres Reveal Dynamic Genus-Specific Shifts in Repeat Composition.
    Hartley GA; Okhovat M; O'Neill RJ; Carbone L
    Mol Biol Evol; 2021 Aug; 38(9):3972-3992. PubMed ID: 33983366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The localization of centromere protein A is conserved among tissues.
    Cappelletti E; Piras FM; Sola L; Santagostino M; Petersen JL; Bellone RR; Finno CJ; Peng S; Kalbfleisch TS; Bailey E; Nergadze SG; Giulotto E
    Commun Biol; 2023 Sep; 6(1):963. PubMed ID: 37735603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centromere sliding on a mammalian chromosome.
    Purgato S; Belloni E; Piras FM; Zoli M; Badiale C; Cerutti F; Mazzagatti A; Perini G; Della Valle G; Nergadze SG; Sullivan KF; Raimondi E; Rocchi M; Giulotto E
    Chromosoma; 2015 Jun; 124(2):277-87. PubMed ID: 25413176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A centromere satellite concomitant with extensive karyotypic diversity across the Peromyscus genus defies predictions of molecular drive.
    Smalec BM; Heider TN; Flynn BL; O'Neill RJ
    Chromosome Res; 2019 Sep; 27(3):237-252. PubMed ID: 30771198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization and molecular evolution of CENP-A--associated satellite DNA families in a basal primate genome.
    Lee HR; Hayden KE; Willard HF
    Genome Biol Evol; 2011; 3():1136-49. PubMed ID: 21828373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning.
    Piras FM; Nergadze SG; Poletto V; Cerutti F; Ryder OA; Leeb T; Raimondi E; Giulotto E
    Cytogenet Genome Res; 2009; 126(1-2):165-72. PubMed ID: 20016166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary life cycle of the resilient centromere.
    Kalitsis P; Choo KH
    Chromosoma; 2012 Aug; 121(4):327-40. PubMed ID: 22527114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.
    Alkan C; Cardone MF; Catacchio CR; Antonacci F; O'Brien SJ; Ryder OA; Purgato S; Zoli M; Della Valle G; Eichler EE; Ventura M
    Genome Res; 2011 Jan; 21(1):137-45. PubMed ID: 21081712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The centromere paradox: stable inheritance with rapidly evolving DNA.
    Henikoff S; Ahmad K; Malik HS
    Science; 2001 Aug; 293(5532):1098-102. PubMed ID: 11498581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic control of centromere: what can we learn from neocentromere?
    Kim T
    Genes Genomics; 2022 Mar; 44(3):317-325. PubMed ID: 34843088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unique kind of human artificial chromosome: Bypassing the requirement for repetitive centromere DNA.
    Gambogi CW; Dawicki-McKenna JM; Logsdon GA; Black BE
    Exp Cell Res; 2020 Jun; 391(2):111978. PubMed ID: 32246994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.