These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 35457002)

  • 1. Molecular Dynamics and Evolution of Centromeres in the Genus Equus.
    Piras FM; Cappelletti E; Santagostino M; Nergadze SG; Giulotto E; Raimondi E
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Satellite-Free Centromere in
    Piras FM; Cappelletti E; Abdelgadir WA; Salamon G; Vignati S; Santagostino M; Sola L; Nergadze SG; Giulotto E
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robertsonian Fusion and Centromere Repositioning Contributed to the Formation of Satellite-free Centromeres During the Evolution of Zebras.
    Cappelletti E; Piras FM; Sola L; Santagostino M; Abdelgadir WA; Raimondi E; Lescai F; Nergadze SG; Giulotto E
    Mol Biol Evol; 2022 Aug; 39(8):. PubMed ID: 35881460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Unique DNA Sequences Underlying Equine Centromeres.
    Giulotto E; Raimondi E; Sullivan KF
    Prog Mol Subcell Biol; 2017; 56():337-354. PubMed ID: 28840244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Birth, evolution, and transmission of satellite-free mammalian centromeric domains.
    Nergadze SG; Piras FM; Gamba R; Corbo M; Cerutti F; McCarter JGW; Cappelletti E; Gozzo F; Harman RM; Antczak DF; Miller D; Scharfe M; Pavesi G; Raimondi E; Sullivan KF; Giulotto E
    Genome Res; 2018 Jun; 28(6):789-799. PubMed ID: 29712753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncoupling of satellite DNA and centromeric function in the genus Equus.
    Piras FM; Nergadze SG; Magnani E; Bertoni L; Attolini C; Khoriauli L; Raimondi E; Giulotto E
    PLoS Genet; 2010 Feb; 6(2):e1000845. PubMed ID: 20169180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite DNA at the Centromere is Dispensable for Segregation Fidelity.
    Roberti A; Bensi M; Mazzagatti A; Piras FM; Nergadze SG; Giulotto E; Raimondi E
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31226862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeatless and repeat-based centromeres in potato: implications for centromere evolution.
    Gong Z; Wu Y; Koblízková A; Torres GA; Wang K; Iovene M; Neumann P; Zhang W; Novák P; Buell CR; Macas J; Jiang J
    Plant Cell; 2012 Sep; 24(9):3559-74. PubMed ID: 22968715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The major horse satellite DNA family is associated with centromere competence.
    Cerutti F; Gamba R; Mazzagatti A; Piras FM; Cappelletti E; Belloni E; Nergadze SG; Raimondi E; Giulotto E
    Mol Cytogenet; 2016; 9():35. PubMed ID: 27123044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analyses of Gibbon Centromeres Reveal Dynamic Genus-Specific Shifts in Repeat Composition.
    Hartley GA; Okhovat M; O'Neill RJ; Carbone L
    Mol Biol Evol; 2021 Aug; 38(9):3972-3992. PubMed ID: 33983366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The localization of centromere protein A is conserved among tissues.
    Cappelletti E; Piras FM; Sola L; Santagostino M; Petersen JL; Bellone RR; Finno CJ; Peng S; Kalbfleisch TS; Bailey E; Nergadze SG; Giulotto E
    Commun Biol; 2023 Sep; 6(1):963. PubMed ID: 37735603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centromere sliding on a mammalian chromosome.
    Purgato S; Belloni E; Piras FM; Zoli M; Badiale C; Cerutti F; Mazzagatti A; Perini G; Della Valle G; Nergadze SG; Sullivan KF; Raimondi E; Rocchi M; Giulotto E
    Chromosoma; 2015 Jun; 124(2):277-87. PubMed ID: 25413176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A centromere satellite concomitant with extensive karyotypic diversity across the Peromyscus genus defies predictions of molecular drive.
    Smalec BM; Heider TN; Flynn BL; O'Neill RJ
    Chromosome Res; 2019 Sep; 27(3):237-252. PubMed ID: 30771198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization and molecular evolution of CENP-A--associated satellite DNA families in a basal primate genome.
    Lee HR; Hayden KE; Willard HF
    Genome Biol Evol; 2011; 3():1136-49. PubMed ID: 21828373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning.
    Piras FM; Nergadze SG; Poletto V; Cerutti F; Ryder OA; Leeb T; Raimondi E; Giulotto E
    Cytogenet Genome Res; 2009; 126(1-2):165-72. PubMed ID: 20016166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary life cycle of the resilient centromere.
    Kalitsis P; Choo KH
    Chromosoma; 2012 Aug; 121(4):327-40. PubMed ID: 22527114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.
    Alkan C; Cardone MF; Catacchio CR; Antonacci F; O'Brien SJ; Ryder OA; Purgato S; Zoli M; Della Valle G; Eichler EE; Ventura M
    Genome Res; 2011 Jan; 21(1):137-45. PubMed ID: 21081712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The centromere paradox: stable inheritance with rapidly evolving DNA.
    Henikoff S; Ahmad K; Malik HS
    Science; 2001 Aug; 293(5532):1098-102. PubMed ID: 11498581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic control of centromere: what can we learn from neocentromere?
    Kim T
    Genes Genomics; 2022 Mar; 44(3):317-325. PubMed ID: 34843088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unique kind of human artificial chromosome: Bypassing the requirement for repetitive centromere DNA.
    Gambogi CW; Dawicki-McKenna JM; Logsdon GA; Black BE
    Exp Cell Res; 2020 Jun; 391(2):111978. PubMed ID: 32246994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.