These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 35457008)

  • 41. Morphological, transcriptional, and metabolic analyses of osmotic-adapted mechanisms of the halophilic Aspergillus montevidensis ZYD4 under hypersaline conditions.
    Ding X; Liu K; Lu Y; Gong G
    Appl Microbiol Biotechnol; 2019 May; 103(9):3829-3846. PubMed ID: 30859256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation and screening of extracellular anticancer enzymes from halophilic and halotolerant bacteria from different saline environments in Iran.
    Zolfaghar M; Amoozegar MA; Khajeh K; Babavalian H; Tebyanian H
    Mol Biol Rep; 2019 Jun; 46(3):3275-3286. PubMed ID: 30993582
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of Biomolecules Involved in the Adaptation to the Environment of Cold-Loving Microorganisms and Metabolic Pathways for Their Production.
    Garcia-Lopez E; Alcazar P; Cid C
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439820
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mapping the Biotransformation of Coumarins through Filamentous Fungi.
    Nascimento JSD; Núñez WER; Santos VHPD; Aleu J; Cunha S; Silva EO
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31569547
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats.
    Gozari M; Alborz M; El-Seedi HR; Jassbi AR
    Eur J Med Chem; 2021 Jan; 210():112957. PubMed ID: 33160760
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Understanding Fungi in Glacial and Hypersaline Environments.
    Gostinčar C; Gunde-Cimerman N
    Annu Rev Microbiol; 2023 Sep; 77():89-109. PubMed ID: 37001148
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics.
    Smedsgaard J; Nielsen J
    J Exp Bot; 2005 Jan; 56(410):273-86. PubMed ID: 15618299
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation.
    Sinha R; Khare SK
    Front Microbiol; 2014; 5():165. PubMed ID: 24782853
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thalassobacillus, a genus of extreme to moderate environmental halophiles with biotechnological potential.
    Tuesta-Popolizio DA; Velázquez-Fernández JB; Rodriguez-Campos J; Contreras-Ramos SM
    World J Microbiol Biotechnol; 2021 Aug; 37(9):147. PubMed ID: 34363544
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sea salts as a potential source of food spoilage fungi.
    Biango-Daniels MN; Hodge KT
    Food Microbiol; 2018 Feb; 69():89-95. PubMed ID: 28941913
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm).
    Echigo A; Hino M; Fukushima T; Mizuki T; Kamekura M; Usami R
    Saline Syst; 2005 Oct; 1():8. PubMed ID: 16242015
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biotransformation of industrial tannins by filamentous fungi.
    Prigione V; Spina F; Tigini V; Giovando S; Varese GC
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10361-10375. PubMed ID: 30293196
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Antagonistic interactions between stress factors during the growth of microorganisms under conditions simulating the parameters of their natural ecotopes].
    Arzumanian VG; Voronina NA; Geĭdebrekht OV; Shelemekh OV; Plakunov VK; Beliaev SS
    Mikrobiologiia; 2002; 71(2):160-5. PubMed ID: 12024812
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ADP-Dependent Kinases From the Archaeal Order
    Gonzalez-Ordenes F; Cea PA; Fuentes-Ugarte N; Muñoz SM; Zamora RA; Leonardo D; Garratt RC; Castro-Fernandez V; Guixé V
    Front Microbiol; 2018; 9():1305. PubMed ID: 29997580
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi.
    Sun X; Su X
    World J Microbiol Biotechnol; 2019 Mar; 35(4):54. PubMed ID: 30900052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review.
    Castillo-Carvajal LC; Sanz-Martín JL; Barragán-Huerta BE
    Environ Sci Pollut Res Int; 2014; 21(16):9578-88. PubMed ID: 24859702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DEOP: a database on osmoprotectants and associated pathways.
    Bougouffa S; Radovanovic A; Essack M; Bajic VB
    Database (Oxford); 2014; 2014():. PubMed ID: 25326239
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Adaptation strategies of halophilic microorganisms and Debaryomyces hansenii (halophilic yeast)].
    González-Hernández JC; Peña A
    Rev Latinoam Microbiol; 2002; 44(3-4):137-56. PubMed ID: 17061488
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Filamentous fungi as cell factories for heterologous protein production.
    Punt PJ; van Biezen N; Conesa A; Albers A; Mangnus J; van den Hondel C
    Trends Biotechnol; 2002 May; 20(5):200-6. PubMed ID: 11943375
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation and characterization of halophilic Archaea able to produce biosurfactants.
    Kebbouche-Gana S; Gana ML; Khemili S; Fazouane-Naimi F; Bouanane NA; Penninckx M; Hacene H
    J Ind Microbiol Biotechnol; 2009 May; 36(5):727-38. PubMed ID: 19266223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.