These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 35457008)

  • 61. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments.
    Duarte AWF; Dos Santos JA; Vianna MV; Vieira JMF; Mallagutti VH; Inforsato FJ; Wentzel LCP; Lario LD; Rodrigues A; Pagnocca FC; Pessoa Junior A; Durães Sette L
    Crit Rev Biotechnol; 2018 Jun; 38(4):600-619. PubMed ID: 29228814
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Health Risks Associated with Exposure to Filamentous Fungi.
    Egbuta MA; Mwanza M; Babalola OO
    Int J Environ Res Public Health; 2017 Jul; 14(7):. PubMed ID: 28677641
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Extremotolerance in fungi: evolution on the edge.
    Gostincar C; Grube M; de Hoog S; Zalar P; Gunde-Cimerman N
    FEMS Microbiol Ecol; 2010 Jan; 71(1):2-11. PubMed ID: 19878320
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Halophilic microbial communities and their environments.
    Oren A
    Curr Opin Biotechnol; 2015 Jun; 33():119-24. PubMed ID: 25727188
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Current state of genome-scale modeling in filamentous fungi.
    Brandl J; Andersen MR
    Biotechnol Lett; 2015 Jun; 37(6):1131-9. PubMed ID: 25700817
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transcriptional regulation of plant cell wall degradation by filamentous fungi.
    Aro N; Pakula T; Penttilä M
    FEMS Microbiol Rev; 2005 Sep; 29(4):719-39. PubMed ID: 16102600
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genetic engineering of filamentous fungi--progress, obstacles and future trends.
    Meyer V
    Biotechnol Adv; 2008; 26(2):177-85. PubMed ID: 18201856
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Lapachol biotransformation by filamentous fungi yields bioactive quinone derivatives and lapachol-stimulated secondary metabolites.
    Barbosa Coitinho L; Fumagalli F; da Rosa-Garzon NG; da Silva Emery F; Cabral H
    Prep Biochem Biotechnol; 2019; 49(5):459-463. PubMed ID: 30896339
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modelling the effect of water activity reduction by sodium chloride or glycerol on conidial germination and radial growth of filamentous fungi encountered in dairy foods.
    Nguyen Van Long N; Rigalma K; Coroller L; Dadure R; Debaets S; Mounier J; Vasseur V
    Food Microbiol; 2017 Dec; 68():7-15. PubMed ID: 28800827
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Limits of life in MgCl2-containing environments: chaotropicity defines the window.
    Hallsworth JE; Yakimov MM; Golyshin PN; Gillion JL; D'Auria G; de Lima Alves F; La Cono V; Genovese M; McKew BA; Hayes SL; Harris G; Giuliano L; Timmis KN; McGenity TJ
    Environ Microbiol; 2007 Mar; 9(3):801-13. PubMed ID: 17298378
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector.
    Mokashe N; Chaudhari B; Patil U
    Int J Biol Macromol; 2018 Oct; 117():493-522. PubMed ID: 29857102
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA).
    Pérez D; Martín S; Fernández-Lorente G; Filice M; Guisán JM; Ventosa A; García MT; Mellado E
    PLoS One; 2011; 6(8):e23325. PubMed ID: 21853111
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas.
    Vaidya S; Dev K; Sourirajan A
    Curr Microbiol; 2018 Jul; 75(7):888-895. PubMed ID: 29480323
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Response to hypoxia, reduction of electron acceptors, and subsequent survival by filamentous fungi.
    Takaya N
    Biosci Biotechnol Biochem; 2009 Jan; 73(1):1-8. PubMed ID: 19129650
    [TBL] [Abstract][Full Text] [Related]  

  • 75. NAD
    Shimizu M
    Biosci Biotechnol Biochem; 2018 Feb; 82(2):216-224. PubMed ID: 29327656
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi.
    Bartoszewska M; Opaliński L; Veenhuis M; van der Klei IJ
    Biotechnol Lett; 2011 Oct; 33(10):1921-31. PubMed ID: 21660569
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of fungi isolated from banana rachis and characterization of their surface activity.
    Méndez-Castillo L; Prieto-Correa E; Jiménez-Junca C
    Lett Appl Microbiol; 2017 Mar; 64(3):246-251. PubMed ID: 28060422
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Production of recombinant proteins by filamentous fungi.
    Ward OP
    Biotechnol Adv; 2012; 30(5):1119-39. PubMed ID: 21968147
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stoichiometric and kinetic analysis of extreme halophilic Archaea on various substrates in a corrosion resistant bioreactor.
    Lorantfy B; Seyer B; Herwig C
    N Biotechnol; 2014 Jan; 31(1):80-9. PubMed ID: 23994053
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The versatility of peroxisome function in filamentous fungi.
    van der Klei IJ; Veenhuis M
    Subcell Biochem; 2013; 69():135-52. PubMed ID: 23821147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.