These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 35457153)
1. Tandem Mass Tagging (TMT) Reveals Tissue-Specific Proteome of L4 Larvae of Stryiński R; Mateos J; Carrera M; Jastrzębski JP; Bogacka I; Łopieńska-Biernat E Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457153 [No Abstract] [Full Text] [Related]
2. Proteome profiling of L3 and L4 Anisakis simplex development stages by TMT-based quantitative proteomics. Stryiński R; Mateos J; Pascual S; González ÁF; Gallardo JM; Łopieńska-Biernat E; Medina I; Carrera M J Proteomics; 2019 Jun; 201():1-11. PubMed ID: 30978463 [TBL] [Abstract][Full Text] [Related]
3. Shotgun Proteomics for L3 and L4 Anisakis simplex Development Stages. Stryiński R; Mateos J; Łopieńska-Biernat E; Carrera M Methods Mol Biol; 2021; 2259():59-75. PubMed ID: 33687709 [TBL] [Abstract][Full Text] [Related]
4. Proteomic and Bioinformatic Investigations of Heat-Treated Kochanowski M; Różycki M; Dąbrowska J; Bełcik A; Karamon J; Sroka J; Cencek T Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32708775 [No Abstract] [Full Text] [Related]
5. Comparative Proteomics Analysis of Polak I; Łopieńska-Biernat E; Stryiński R; Mateos J; Carrera M Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32604878 [TBL] [Abstract][Full Text] [Related]
6. Proteomic profiling and characterization of differential allergens in the nematodes Anisakis simplex sensu stricto and A. pegreffii. Arcos SC; Ciordia S; Roberston L; Zapico I; Jiménez-Ruiz Y; Gonzalez-Muñoz M; Moneo I; Carballeda-Sangiao N; Rodriguez-Mahillo A; Albar JP; Navas A Proteomics; 2014 Jun; 14(12):1547-68. PubMed ID: 24723494 [TBL] [Abstract][Full Text] [Related]
7. Differential Cleaving of Specific Substrates for Cathepsin-Like Activity Shows Cysteine and Serine Protease Activities and a Differential Profile Between Torralbo-Ramírez V; Molina-Fernández D; Malagón D; Benítez R; Adroher FJ Foodborne Pathog Dis; 2019 Nov; 16(11):744-751. PubMed ID: 31215796 [TBL] [Abstract][Full Text] [Related]
8. A scanning electron microscopy study of Anisakis physeteris molecularly identified: from third stage larvae from fish to fourth stage larvae obtained in vitro. Molina-Fernández D; Adroher FJ; Benítez R Parasitol Res; 2018 Jul; 117(7):2095-2103. PubMed ID: 29736730 [TBL] [Abstract][Full Text] [Related]
9. Differential proteolytic activity in Anisakis simplex s.s. and Anisakis pegreffii, two sibling species from the complex Anisakis simplex s.l., major etiological agents of anisakiasis. Molina-Fernández D; Benítez R; Adroher FJ; Malagón D Acta Trop; 2019 Jul; 195():44-50. PubMed ID: 30995435 [TBL] [Abstract][Full Text] [Related]
10. Anisakis simplex sensu stricto and Anisakis pegreffii: biological characteristics and pathogenetic potential in human anisakiasis. Arizono N; Yamada M; Tegoshi T; Yoshikawa M Foodborne Pathog Dis; 2012 Jun; 9(6):517-21. PubMed ID: 22545961 [TBL] [Abstract][Full Text] [Related]
11. Proteomic Profiling and In Silico Characterization of the Secretome of Kochanowski M; Dąbrowska J; Różycki M; Sroka J; Karamon J; Bełcik A; Korpysa-Dzirba W; Cencek T Pathogens; 2022 Feb; 11(2):. PubMed ID: 35215189 [No Abstract] [Full Text] [Related]
12. Anisakis and Hysterothylacium species in Mediterranean and North-East Atlantic fishes commonly consumed in Spain: Epidemiological, molecular and morphometric discriminant analysis. Roca-Geronès X; Segovia M; Godínez-González C; Fisa R; Montoliu I Int J Food Microbiol; 2020 Jul; 325():108642. PubMed ID: 32361053 [TBL] [Abstract][Full Text] [Related]
13. Proteomic Profiling Reveals New Insights into the Allergomes of Anisakis simplex, Pseudoterranova decipiens, and Contracaecum osculatum. Kochanowski M; Dąbrowska J; Różycki M; Karamon J; Sroka J; Cencek T J Parasitol; 2020 Oct; 106(5):572-588. PubMed ID: 32906150 [TBL] [Abstract][Full Text] [Related]
14. Glycogen catabolism enzymes and protein fractions in the third and fourth larval stages of Anisakis simplex. Łopieńska-Biernat E; Zółtowska K; Rokicki J J Helminthol; 2008 Mar; 82(1):45-51. PubMed ID: 18053298 [TBL] [Abstract][Full Text] [Related]
15. Morphological differences between larvae and in vitro-cultured adults of Anisakis simplex (sensu stricto) and Anisakis pegreffii (Nematoda: Anisakidae). Quiazon KM; Yoshinaga T; Ogawa K; Yukami R Parasitol Int; 2008 Dec; 57(4):483-9. PubMed ID: 18644463 [TBL] [Abstract][Full Text] [Related]
16. Immunoreactive Proteins in the Esophageal Gland Cells of Anisakis Simplex Sensu Stricto Detected by MALDI-TOF/TOF Analysis. Robertson L; C Arcos S; Ciordia S; Carballeda-Sanguiao N; Mena MDC; Sánchez-Alonso I; Gonzalez-Muñoz M; Careche M; Navas A Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32580523 [TBL] [Abstract][Full Text] [Related]
17. Effect of freezing on the metabolic status of L3 larvae of Anisakis simplex s. s. Łopieńska-Biernat E; Stryiński R; Polak I; Pawlikowski B; Pawlak J; Podolska M Infect Genet Evol; 2020 Aug; 82():104312. PubMed ID: 32247867 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide analysis of Anisakis simplex sensu lato: the role of carbohydrate metabolism genes in the parasite's development. Łopieńska-Biernat E; Paukszto Ł; Jastrzębski JP; Myszczyński K; Polak I; Stryiński R Int J Parasitol; 2019 Nov; 49(12):933-943. PubMed ID: 31560928 [TBL] [Abstract][Full Text] [Related]
19. Metabolomic analysis reveals a differential adaptation process of the larval stages of Polak I; Stryiński R; Majewska M; Łopieńska-Biernat E Front Mol Biosci; 2023; 10():1233586. PubMed ID: 37520327 [No Abstract] [Full Text] [Related]
20. Differences in Gene Expression Profiles of Seven Target Proteins in Third-Stage Larvae of Palomba M; Cipriani P; Giulietti L; Levsen A; Nascetti G; Mattiucci S Genes (Basel); 2020 May; 11(5):. PubMed ID: 32429519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]