These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35457234)

  • 1. Optimization of Genome Knock-In Method: Search for the Most Efficient Genome Regions for Transgene Expression in Plants.
    Rozov SM; Permyakova NV; Sidorchuk YV; Deineko EV
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Strategies for Optimizing Recombinant Protein Synthesis in Plant Cells: Classical Approaches and New Directions].
    Rozov SM; Deineko EV
    Mol Biol (Mosk); 2019; 53(2):179-199. PubMed ID: 31099770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering.
    Wada N; Ueta R; Osakabe Y; Osakabe K
    BMC Plant Biol; 2020 May; 20(1):234. PubMed ID: 32450802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPER/Cas in Plant Natural Product Research: Therapeutics as Anticancer and other Drug Candidates and Recent Patents.
    Dey A; Nandy S
    Recent Pat Anticancer Drug Discov; 2021; 16(4):460-468. PubMed ID: 34911411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis by biolistic transformation efficiently generates inheritable mutations in a targeted locus in soybean somatic embryos and transgene-free descendants in the T
    Adachi K; Hirose A; Kanazashi Y; Hibara M; Hirata T; Mikami M; Endo M; Hirose S; Maruyama N; Ishimoto M; Abe J; Yamada T
    Transgenic Res; 2021 Feb; 30(1):77-89. PubMed ID: 33386504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances.
    Soda N; Verma L; Giri J
    Plant Physiol Biochem; 2018 Oct; 131():2-11. PubMed ID: 29103811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H
    Wu TM; Huang JZ; Oung HM; Hsu YT; Tsai YC; Hong CY
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31404948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Problem of the Low Rates of CRISPR/Cas9-Mediated Knock-ins in Plants: Approaches and Solutions.
    Rozov SM; Permyakova NV; Deineko EV
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31323994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration, abundance, and transmission of mutations and transgenes in a series of CRISPR/Cas9 soybean lines.
    Michno JM; Virdi K; Stec AO; Liu J; Wang X; Xiong Y; Stupar RM
    BMC Biotechnol; 2020 Feb; 20(1):10. PubMed ID: 32093670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas-Mediated Resistance against Viruses in Plants.
    Khan ZA; Kumar R; Dasgupta I
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA.
    Zhang Y; Liang Z; Zong Y; Wang Y; Liu J; Chen K; Qiu JL; Gao C
    Nat Commun; 2016 Aug; 7():12617. PubMed ID: 27558837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.
    Bánfalvi Z; Csákvári E; Villányi V; Kondrák M
    BMC Biotechnol; 2020 May; 20(1):25. PubMed ID: 32398038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Pragmatic Introduction and Expression of Microbial Transgenes in Plants.
    Ali S; Park SK; Kim WC
    J Microbiol Biotechnol; 2018 Dec; 28(12):1955-1970. PubMed ID: 30394044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system.
    Xu RF; Li H; Qin RY; Li J; Qiu CH; Yang YC; Ma H; Li L; Wei PC; Yang JB
    Sci Rep; 2015 Jun; 5():11491. PubMed ID: 26089199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying gene editing to tailor precise genetic modifications in plants.
    Van Eck J
    J Biol Chem; 2020 Sep; 295(38):13267-13276. PubMed ID: 32723863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated knockout of the DCL2 and DCL4 genes in Nicotiana benthamiana and its productivity of recombinant proteins.
    Matsuo K
    Plant Cell Rep; 2022 Feb; 41(2):307-317. PubMed ID: 34783883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9.
    Dong OX; Yu S; Jain R; Zhang N; Duong PQ; Butler C; Li Y; Lipzen A; Martin JA; Barry KW; Schmutz J; Tian L; Ronald PC
    Nat Commun; 2020 Mar; 11(1):1178. PubMed ID: 32132530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.