BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35457803)

  • 1. Fabrication of Transparent and Flexible Digital Microfluidics Devices.
    Cai J; Jiang J; Jiang J; Tao Y; Gao X; Ding M; Fan Y
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affordable Fabrication of Conductive Electrodes and Dielectric Films for a Paper-based Digital Microfluidic Chip.
    Soum V; Kim Y; Park S; Chuong M; Ryu SR; Lee SH; Tanev G; Madsen J; Kwon OS; Shin K
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30736440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrochemical method for a rapid and sensitive immunoassay on digital microfluidics with integrated indium tin oxide electrodes coated on a PET film.
    Nsabimana J; Wang Y; Ruan Q; Li T; Shen H; Yang C; Zhu Z
    Analyst; 2021 Jul; 146(14):4473-4479. PubMed ID: 34227625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrowetting-on-Dielectric Based Economical Digital Microfluidic Chip on Flexible Substrate by Inkjet Printing.
    Wang H; Chen L
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33339126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Study of Dielectrophoresis-Based Liquid Metal Droplet Control Microfluidic Device.
    Tian L; Ye Z; Gui L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33806767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Wettability and Electrical Resistance Analysis of Droplets on Indium-Tin-Oxide Glass Fabricated Using an Ultraviolet Laser System.
    Tsai HY; Hsu CN; Li CR; Lin YH; Hsiao WT; Huang KC; Yeh JA
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Electrode Patterns for an ITO-Based Digital Microfluidic through the Finite Element Simulation.
    Song ZR; Zeng J; Zhou JL; Yan BY; Gu Z; Wang HF
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible and Transparent Artificial Synapse Devices Based on Thin-Film Transistors with Nanometer Thickness.
    Dai C; Huo C; Qi S; Dai M; Webster T; Xiao H
    Int J Nanomedicine; 2020; 15():8037-8043. PubMed ID: 33116516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact photolithography-free integration of patterned and semi-transparent indium tin oxide stimulation electrodes into polydimethylsiloxane-based heart-on-a-chip devices for streamlining physiological recordings.
    Yip JK; Sarkar D; Petersen AP; Gipson JN; Tao J; Kale S; Rexius-Hall ML; Cho N; Khalil NN; Kapadia R; McCain ML
    Lab Chip; 2021 Feb; 21(4):674-687. PubMed ID: 33439202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Temperature Fabrication of Robust, Transparent, and Flexible Thin-Film Transistors with a Nanolaminated Insulator.
    Kwon JH; Park J; Lee MK; Park JW; Jeon Y; Shin JB; Nam M; Kim CK; Choi YK; Choi KC
    ACS Appl Mater Interfaces; 2018 May; 10(18):15829-15840. PubMed ID: 29672018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of a Transparent and Adhesive Sealing Top for Microfluidic Lab-Chip Applications.
    Agarwal A; Salahuddin A; Ahamed MJ
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet Velocity Measurement Based on Dielectric Layer Thickness Variation Using Digital Microfluidic Devices.
    Zulkepli SNIS; Hamid NH; Shukla V
    Biosensors (Basel); 2018 May; 8(2):. PubMed ID: 29738428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An easy-fabricated and disposable polymer-film microfluidic impedance cytometer for cell sensing.
    Zhu S; Zhang X; Chen M; Tang D; Han Y; Xiang N; Ni Z
    Anal Chim Acta; 2021 Aug; 1175():338759. PubMed ID: 34330437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Indium-Tin Oxide Crystal on Plastic Substrates Supported by Graphene Monolayer.
    Lee SJ; Kim Y; Hwang JY; Lee JH; Jung S; Park H; Cho S; Nahm S; Yang WS; Kim H; Han SH
    Sci Rep; 2017 Jun; 7(1):3131. PubMed ID: 28600488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide.
    Sakamoto K; Kuwae H; Kobayashi N; Nobori A; Shoji S; Mizuno J
    Sci Rep; 2018 Feb; 8(1):2825. PubMed ID: 29434296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Inkjet-Printed Digital Microfluidics Devices.
    Chen S; He Z; Choi S; Novosselov IV
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Glass-Ultra-Thin PDMS Film-Glass Microfluidic Device for Digital PCR Application Based on Flexible Mold Peel-Off Process.
    Xia Y; Chu X; Zhao C; Wang N; Yu J; Jin Y; Sun L; Ma S
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation.
    Gao K; Liu J; Fan Y; Zhang Y
    Biomed Microdevices; 2019 Aug; 21(4):83. PubMed ID: 31418064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.