These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35457811)

  • 21. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.
    Zhao Y; Guo S; Xiao N; Wang Y; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):33. PubMed ID: 29610988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of haptic feedback on applied intracorporeal forces using a novel surgical robotic system-a randomized cross-over study with novices in an experimental setup.
    Miller J; Braun M; Bilz J; Matich S; Neupert C; Kunert W; Kirschniak A
    Surg Endosc; 2021 Jul; 35(7):3554-3563. PubMed ID: 32700151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Augmentation of haptic feedback for teleoperated robotic surgery.
    Schleer P; Kaiser P; Drobinsky S; Radermacher K
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):515-529. PubMed ID: 32002750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of visual force feedback on robot-assisted surgical task performance.
    Reiley CE; Akinbiyi T; Burschka D; Chang DC; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2008 Jan; 135(1):196-202. PubMed ID: 18179942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel robotic system for flexible ureteroscopy.
    Shu X; Chen Q; Xie L
    Int J Med Robot; 2021 Feb; 17(1):1-11. PubMed ID: 33103335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Haptic tracking control for minimally invasive robotic surgery].
    Xu Z; Song C; Wu W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):407-10. PubMed ID: 22826928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Research of the master-slave robot surgical system with the function of force feedback.
    Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cardiac X-ray image-based haptic guidance for robot-assisted coronary intervention: a feasibility study.
    Tahir A; Iqbal H; Usman M; Ghaffar A; Hafeez A
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):531-539. PubMed ID: 35041132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master.
    Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A
    IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems.
    Friedrich DT; Dürselen L; Mayer B; Hacker S; Schall F; Hahn J; Hoffmann TK; Schuler PJ; Greve J
    J Robot Surg; 2018 Mar; 12(1):103-108. PubMed ID: 28470408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study.
    Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery.
    Koehn JK; Kuchenbecker KJ
    Surg Endosc; 2015 Oct; 29(10):2970-83. PubMed ID: 25539693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and control of a magnetorheological haptic device for robot assisted surgery.
    Shokrollahi E; Goldenberg AA; Drake JM; Eastwood KW; Kang M
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3926-3929. PubMed ID: 29060756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel robotic system for vascular intervention: principles, performances, and applications.
    Shen H; Wang C; Xie L; Zhou S; Gu L; Xie H
    Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):671-683. PubMed ID: 30739274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Future of robotic surgery in urology.
    Rassweiler JJ; Autorino R; Klein J; Mottrie A; Goezen AS; Stolzenburg JU; Rha KH; Schurr M; Kaouk J; Patel V; Dasgupta P; Liatsikos E
    BJU Int; 2017 Dec; 120(6):822-841. PubMed ID: 28319324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compensatory force measurement and multimodal force feedback for remote-controlled vascular interventional robot.
    Bao X; Guo S; Xiao N; Li Y; Shi L
    Biomed Microdevices; 2018 Aug; 20(3):74. PubMed ID: 30116968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Integrated Sensor-Model Approach for Haptic Feedback of Flexible Endoscopic Robots.
    Lai W; Cao L; Tan RX; Tan YC; Li X; Phan PT; Tiong AMH; Tjin SC; Phee SJ
    Ann Biomed Eng; 2020 Jan; 48(1):342-356. PubMed ID: 31485875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector.
    Tavakoli M; Patel RV; Moallem M
    Int J Med Robot; 2005 Jan; 1(2):53-63. PubMed ID: 17518379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.