These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35457884)

  • 1. The Effect of Surface Wettability on Viscoelastic Droplet Dynamics under Electric Fields.
    Wei BS; Joo SW
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical study on viscoelastic droplet migration on a solid substrate due to wettability gradient.
    Bai F; Li Y; Zhang H; Joo SW
    Electrophoresis; 2019 Mar; 40(6):851-858. PubMed ID: 30511773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Viscoelasticity on Droplet Migration on Surfaces with Wettability Gradients.
    Ren YJ; Joo SW
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric manipulation on deformation of ionic ferrofluid sessile droplets.
    Zhu GP; Li XA; Wang QY; Fang MH; Ding YC
    Electrophoresis; 2024 Jul; 45(13-14):1243-1251. PubMed ID: 38308502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confinement Dynamics of Nanodroplets between Two Surfaces: Effects of Wettability and Electric Field.
    Liu D; Cao Q; Piao Z; Li L
    Chemphyschem; 2022 Dec; 23(24):e202200184. PubMed ID: 35986551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impinging blood droplets on different wettable surfaces: Impact phenomena, contact line motion, post-impact oscillation and dried stains.
    Xiang S; Liu Y; Tang Q; Jin Y; Fan J; Chen L
    Sci Justice; 2023 Jul; 63(4):517-528. PubMed ID: 37453784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel actuation method of transporting droplets by using electrical charging of droplet in a dielectric fluid.
    Jung YM; Kang IS
    Biomicrofluidics; 2009 Apr; 3(2):22402. PubMed ID: 19693337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant and dilatational viscosity effects on the deformation of liquid droplets in an electric field.
    Han Y; Koplik J; Maldarelli C
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):900-911. PubMed ID: 34560389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet impact on soft viscoelastic surfaces.
    Chen L; Bonaccurso E; Deng P; Zhang H
    Phys Rev E; 2016 Dec; 94(6-1):063117. PubMed ID: 28085484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation and breakup of viscoelastic droplets in confined shear flow.
    Gupta A; Sbragaglia M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023305. PubMed ID: 25215849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical actuation of dielectric droplets by negative liquid dielectrophoresis.
    Piao Y; Yu K; Jones TB; Wang W
    Electrophoresis; 2021 Dec; 42(23):2490-2497. PubMed ID: 34310746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet Rolling Transport on Hydrophobic Surfaces Under Rotating Electric Fields: A Molecular Dynamics Study.
    Liu W; Jing D
    Langmuir; 2023 Oct; 39(41):14660-14669. PubMed ID: 37802133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics Behaviors of Droplet on Hydrophobic Surfaces Driven by Electric Field.
    Liu J; Liu S
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31739492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation hysteresis of a water nano-droplet in an electric field.
    Song F; Ju D; Fan J; Chen Q; Yang Q
    Eur Phys J E Soft Matter; 2019 Sep; 42(9):120. PubMed ID: 31494769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of substrate elasticity on droplet impact dynamics.
    Alizadeh A; Bahadur V; Shang W; Zhu Y; Buckley D; Dhinojwala A; Sohal M
    Langmuir; 2013 Apr; 29(14):4520-4. PubMed ID: 23398129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation of Emulsion Droplet with Clean and Particle-Covered Interface under an Electric Field.
    Abbasi MS; Farooq H; Ali H; Kazim AH; Nazir R; Shabbir A; Cho S; Song R; Lee J
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Hookean Droplet Spring for Enhancing Hydropower Harvest.
    Xue L; Li H; Li A; Zhao Z; Li K; Li M; Song Y
    Small; 2022 May; 18(18):e2200875. PubMed ID: 35385220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.