These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35457969)

  • 1. Effects of Shape Anisotropy on Hard-Soft Exchange-Coupled Permanent Magnets.
    Yang Z; Chen Y; Liu W; Wang Y; Li Y; Zhang D; Lu Q; Wu Q; Zhang H; Yue M
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remanence Increase in SrFe
    Guzmán-Mínguez JC; Granados-Miralles C; Kuntschke P; de Julián Fernández C; Erokhin S; Berkov D; Schliesch T; Fernández JF; Quesada A
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell.
    Liu F; Zhu J; Yang W; Dong Y; Hou Y; Zhang C; Yin H; Sun S
    Angew Chem Int Ed Engl; 2014 Feb; 53(8):2176-80. PubMed ID: 24453167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exchange-coupled fct-FePd/α-Fe nanocomposite magnets converted from Pd/Fe3O4 core/shell nanoparticles.
    Liu F; Dong Y; Yang W; Yu J; Xu Z; Hou Y
    Chemistry; 2014 Nov; 20(46):15197-202. PubMed ID: 25255788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically High Magnetic Performance in Core-Shell Structural (Sm,Y)Fe
    Zhao L; Su R; Wen L; Li W; Liu X; Zhang Z; Zhao R; Han Y; Zhang X; Li W
    Adv Mater; 2022 Jul; 34(28):e2203503. PubMed ID: 35562323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic-Property Assessment on Dy-Nd-Fe-B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation.
    Dai Z; Li K; Wang Z; Liu W; Zhang Z
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oriented exchange-coupled L1
    Liu X; Zuo S; Wang H; Zhang T; Dong Y; Jiang C
    RSC Adv; 2022 Mar; 12(12):7568-7573. PubMed ID: 35424666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exchange Coupling in Soft Magnetic Nanostructures and Its Direct Effect on Their Theranostic Properties.
    Nandwana V; Zhou R; Mohapatra J; Kim S; Prasad PV; Liu JP; Dravid VP
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27233-27243. PubMed ID: 30036037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic Origin of Magnetization Reversal in Nanoscale Exchange-Coupled Ferri/Ferromagnetic Bilayers: Implications for High Energy Density Permanent Magnets and Spintronic Devices.
    Heigl M; Vogler C; Mandru AO; Zhao X; Hug HJ; Suess D; Albrecht M
    ACS Appl Nano Mater; 2020 Sep; 3(9):9218-9225. PubMed ID: 33005879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room Temperature Blocked Magnetic Nanoparticles Based on Ferrite Promoted by a Three-Step Thermal Decomposition Process.
    Sartori K; Choueikani F; Gloter A; Begin-Colin S; Taverna D; Pichon BP
    J Am Chem Soc; 2019 Jun; 141(25):9783-9787. PubMed ID: 31149820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of the exchange-spring permanent magnet.
    Jiang JS; Bader SD
    J Phys Condens Matter; 2014 Feb; 26(6):064214. PubMed ID: 24469386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strongly exchange coupled inverse ferrimagnetic soft/hard, Mn(x)Fe(3-x)O4/Fe(x)Mn(3-x)O4, core/shell heterostructured nanoparticles.
    López-Ortega A; Estrader M; Salazar-Alvarez G; Estradé S; Golosovsky IV; Dumas RK; Keavney DJ; Vasilakaki M; Trohidou KN; Sort J; Peiró F; Suriñach S; Baró MD; Nogués J
    Nanoscale; 2012 Aug; 4(16):5138-47. PubMed ID: 22797330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Self-Assembly of Core/Shell-Like Nanostructures for High-Performance Nanocomposite Permanent Magnets.
    Li H; Li X; Guo D; Lou L; Li W; Zhang X
    Nano Lett; 2016 Sep; 16(9):5631-8. PubMed ID: 27570896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.
    Narayanaswamy V; Al-Omari IA; Kamzin AS; Issa B; Obaidat IM
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles.
    Estrader M; López-Ortega A; Estradé S; Golosovsky IV; Salazar-Alvarez G; Vasilakaki M; Trohidou KN; Varela M; Stanley DC; Sinko M; Pechan MJ; Keavney DJ; Peiró F; Suriñach S; Baró MD; Nogués J
    Nat Commun; 2013; 4():2960. PubMed ID: 24343382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of strong
    Matsumoto K; Sato R; Trinh TT; Sakuma N; Shoji T; Haruta M; Kurata H; Teranishi T
    Nanoscale Adv; 2019 Jul; 1(7):2598-2605. PubMed ID: 36132735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing strongly exchange coupled magnetic behaviors in soft/hard Ni/CoFe
    Han JK; Baker AA; Lee JRI; McCall SK
    Nanoscale; 2023 Sep; 15(36):14782-14789. PubMed ID: 37548923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly.
    Zeng H; Li J; Liu JP; Wang ZL; Sun S
    Nature; 2002 Nov; 420(6914):395-8. PubMed ID: 12459779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromagnetic simulation of microstructure effect for binary-main-phase Nd-Ce-Fe-B magnets.
    Kim C; Liang D; Han Y; Ding S; Li K; Yun C; Yang W; Han J; Liu S; Du H; Wang C; Yang J
    J Phys Condens Matter; 2021 Aug; 33(44):. PubMed ID: 34348249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Magnetization Dynamics of a Magnetic Nanoparticle with a Disordered Shell Using Micromagnetic Simulations.
    Aurélio D; Vejpravova J
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32545385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.