These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35458074)

  • 1. Superconducting Materials and Devices Grown by Focused Ion and Electron Beam Induced Deposition.
    Orús P; Sigloch F; Sangiao S; De Teresa JM
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting properties of in-plane W-C nanowires grown by He
    Orús P; Córdoba R; Hlawacek G; De Teresa JM
    Nanotechnology; 2021 Feb; 32(8):085301. PubMed ID: 33171446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thickness-modulated tungsten-carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields.
    Serrano IG; Sesé J; Guillamón I; Suderow H; Vieira S; Ibarra MR; De Teresa JM
    Beilstein J Nanotechnol; 2016; 7():1698-1708. PubMed ID: 28144519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires.
    Orús P; Fomin VM; De Teresa JM; Córdoba R
    Sci Rep; 2021 Sep; 11(1):17698. PubMed ID: 34489493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct-Write Printing of Josephson Junctions in a Scanning Electron Microscope.
    Blom TJ; Mechielsen TW; Fermin R; Hesselberth MBS; Aarts J; Lahabi K
    ACS Nano; 2021 Jan; 15(1):322-329. PubMed ID: 33231428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystalline Niobium Carbide Superconducting Nanowires Prepared by Focused Ion Beam Direct Writing.
    Porrati F; Barth S; Sachser R; Dobrovolskiy OV; Seybert A; Frangakis AS; Huth M
    ACS Nano; 2019 Jun; 13(6):6287-6296. PubMed ID: 31046238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Quantum Integrated Circuits on Superconducting Two-Dimensional Electron Gas Platform.
    Delfanazari K; Ma P; Puddy R; Yi T; Cao M; Gul Y; Richardson CL; Farrer I; Ritchie D; Joyce HJ; Kelly MJ; Smith CG
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31424429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct-write of tungsten-carbide nanoSQUIDs based on focused ion beam induced deposition.
    Sigloch F; Sangiao S; Orús P; de Teresa JM
    Nanoscale Adv; 2022 Oct; 4(21):4628-4634. PubMed ID: 36341293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Resolution Three-Dimensional Sculpting of Two-Dimensional Graphene Oxide by E-Beam Direct Write.
    Kim S; Jung S; Lee J; Kim S; Fedorov AG
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39595-39601. PubMed ID: 32805878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconductivity of freestanding tungsten nanofeatures grown by focused-ion-beam.
    Li W; Gu C; Warburton PA
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7436-8. PubMed ID: 21137953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical Growth of Superconducting Crystalline Hollow Nanowires by He
    Córdoba R; Ibarra A; Mailly D; De Teresa JM
    Nano Lett; 2018 Feb; 18(2):1379-1386. PubMed ID: 29357248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium Nitride as a New Prospective Material for NanoSQUIDs and Superconducting Nanobridge Electronics.
    Faley MI; Liu Y; Dunin-Borkowski RE
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33673042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of superconducting magnets for RAON 28 GHz ECR ion source.
    Heo J; Choi S; Kim Y; Hong IS
    Rev Sci Instrum; 2016 Feb; 87(2):02A734. PubMed ID: 26931952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopatterning of Weak Links in Superconducting Oxide Interfaces.
    Singh G; Lesne E; Winkler D; Claeson T; Bauch T; Lombardi F; Caviglia AD; Kalaboukhov A
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33557305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. YBa
    Lin J; Müller B; Linek J; Karrer M; Wenzel M; Martínez-Pérez MJ; Kleiner R; Koelle D
    Nanoscale; 2020 Mar; 12(9):5658-5668. PubMed ID: 32101218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopantography: a new method for massively parallel nanopatterning over large areas.
    Xu L; Vemula SC; Jain M; Nam SK; Donnelly VM; Economou DJ; Ruchhoeft P
    Nano Lett; 2005 Dec; 5(12):2563-8. PubMed ID: 16351216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-assembled superconducting 3D nanoscale architectures.
    Shani L; Michelson AN; Minevich B; Fleger Y; Stern M; Shaulov A; Yeshurun Y; Gang O
    Nat Commun; 2020 Nov; 11(1):5697. PubMed ID: 33173061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Superconducting Nanohelices Grown by He
    Córdoba R; Mailly D; Rezaev RO; Smirnova EI; Schmidt OG; Fomin VM; Zeitler U; Guillamón I; Suderow H; De Teresa JM
    Nano Lett; 2019 Dec; 19(12):8597-8604. PubMed ID: 31730351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused ion beam lithography for fabrication of suspended nanostructures on highly corrugated surfaces.
    Erdmanis M; Sievilä P; Shah A; Chekurov N; Ovchinnikov V; Tittonen I
    Nanotechnology; 2014 Aug; 25(33):335302. PubMed ID: 25074238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review.
    Utke I; Michler J; Winkler R; Plank H
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32290292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.