These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 3545832)
1. Conformations of yeast alpha-mating factor and analog peptides as bound to phospholipid bilayer. Correlation of membrane-bound conformation with physiological activity. Wakamatsu K; Okada A; Miyazawa T; Masui Y; Sakakibara S; Higashijima T Eur J Biochem; 1987 Mar; 163(2):331-8. PubMed ID: 3545832 [TBL] [Abstract][Full Text] [Related]
2. Nuclear-magnetic-resonance studies on the conformation of membrane-bound alpha-mating factor. Transferred nuclear Overhauser effect analysis. Wakamatsu K; Okada A; Suzuki M; Higashijima T; Masui Y; Sakakibara S; Miyazawa T Eur J Biochem; 1986 Feb; 154(3):607-15. PubMed ID: 3512267 [TBL] [Abstract][Full Text] [Related]
3. Nuclear-magnetic-resonance studies on the conformations of tridecapeptide alpha-mating factor from yeast Saccharomyces cerevisiae and analog peptides in aqueous solution. Conformation-activity relationship. Higashijima T; Masui Y; Chino N; Sakakibara S; Kita H; Miyazawa T Eur J Biochem; 1984 Apr; 140(1):163-71. PubMed ID: 6323177 [TBL] [Abstract][Full Text] [Related]
4. Transferred nuclear Overhauser effect analyses of membrane-bound enkephalin analogues by 1H nuclear magnetic resonance: correlation between activities and membrane-bound conformations. Milon A; Miyazawa T; Higashijima T Biochemistry; 1990 Jan; 29(1):65-75. PubMed ID: 2157483 [TBL] [Abstract][Full Text] [Related]
5. Role of prenylation in the interaction of the a-factor mating pheromone with phospholipid bilayers. Epand RF; Xue CB; Wang SH; Naider F; Becker JM; Epand RM Biochemistry; 1993 Aug; 32(32):8368-73. PubMed ID: 8347633 [TBL] [Abstract][Full Text] [Related]
6. Anionic phospholipids modulate peptide insertion into membranes. Liu LP; Deber CM Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930 [TBL] [Abstract][Full Text] [Related]
7. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study. Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202 [TBL] [Abstract][Full Text] [Related]
8. Peptides with the same composition, hydrophobicity, and hydrophobic moment bind to phospholipid bilayers with different affinities. Cherry MA; Higgins SK; Melroy H; Lee HS; Pokorny A J Phys Chem B; 2014 Oct; 118(43):12462-70. PubMed ID: 25329983 [TBL] [Abstract][Full Text] [Related]
9. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
10. Solid-state NMR studies of a diverged microsomal amino-proximate delta12 desaturase peptide reveal causes of stability in bilayer: tyrosine anchoring and arginine snorkeling. Gibbons WJ; Karp ES; Cellar NA; Minto RE; Lorigan GA Biophys J; 2006 Feb; 90(4):1249-59. PubMed ID: 16326900 [TBL] [Abstract][Full Text] [Related]
11. Membrane-bound conformation of mastoparan-X, a G-protein-activating peptide. Wakamatsu K; Okada A; Miyazawa T; Ohya M; Higashijima T Biochemistry; 1992 Jun; 31(24):5654-60. PubMed ID: 1610813 [TBL] [Abstract][Full Text] [Related]
12. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783 [TBL] [Abstract][Full Text] [Related]
13. The antimicrobial peptide trichogin and its interaction with phospholipid membranes. Epand RF; Epand RM; Monaco V; Stoia S; Formaggio F; Crisma M; Toniolo C Eur J Biochem; 1999 Dec; 266(3):1021-8. PubMed ID: 10583397 [TBL] [Abstract][Full Text] [Related]
14. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
15. A study of carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine, an inhibitor of membrane fusion, in phospholipid bilayers with multinuclear magnetic resonance. Dentino AR; Westerman PW; Yeagle PL Biochim Biophys Acta; 1995 May; 1235(2):213-20. PubMed ID: 7756328 [TBL] [Abstract][Full Text] [Related]
16. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
17. Vesicle-bound conformation of melittin: transferred nuclear Overhauser enhancement analysis in the presence of perdeuterated phosphatidylcholine vesicles. Okada A; Wakamatsu K; Miyazawa T; Higashijima T Biochemistry; 1994 Aug; 33(32):9438-46. PubMed ID: 8068618 [TBL] [Abstract][Full Text] [Related]
18. Binding of the three-repeat domain of tau to phospholipid membranes induces an aggregated-like state of the protein. Künze G; Barré P; Scheidt HA; Thomas L; Eliezer D; Huster D Biochim Biophys Acta; 2012 Sep; 1818(9):2302-13. PubMed ID: 22521809 [TBL] [Abstract][Full Text] [Related]
19. Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry. Rybar P; Krivanek R; Samuely T; Lewis RN; McElhaney RN; Hianik T Biochim Biophys Acta; 2007 Jun; 1768(6):1466-78. PubMed ID: 17462583 [TBL] [Abstract][Full Text] [Related]
20. Interaction between Alzheimer's Abeta(25-35) peptide and phospholipid bilayers: the role of cholesterol. D'Errico G; Vitiello G; Ortona O; Tedeschi A; Ramunno A; D'Ursi AM Biochim Biophys Acta; 2008 Dec; 1778(12):2710-6. PubMed ID: 18706389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]