These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 35458331)
1. Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF. Nafees A; Khan S; Javed MF; Alrowais R; Mohamed AM; Mohamed A; Vatin NI Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458331 [TBL] [Abstract][Full Text] [Related]
2. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP. Nafees A; Javed MF; Khan S; Nazir K; Farooq F; Aslam F; Musarat MA; Vatin NI Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947124 [TBL] [Abstract][Full Text] [Related]
3. In-Depth Analysis of Cement-Based Material Incorporating Metakaolin Using Individual and Ensemble Machine Learning Approaches. Bulbul AMR; Khan K; Nafees A; Amin MN; Ahmad W; Usman M; Nazar S; Arab AMA Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363356 [TBL] [Abstract][Full Text] [Related]
4. Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques. Nafees A; Amin MN; Khan K; Nazir K; Ali M; Javed MF; Aslam F; Musarat MA; Vatin NI Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012050 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Mechanical Properties of Fly-Ash/Slag-Based Geopolymer Concrete Using Ensemble and Non-Ensemble Machine-Learning Techniques. Amin MN; Khan K; Javed MF; Aslam F; Qadir MG; Faraz MI Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629515 [TBL] [Abstract][Full Text] [Related]
6. Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches. Ullah HS; Khushnood RA; Farooq F; Ahmad J; Vatin NI; Ewais DYZ Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591498 [TBL] [Abstract][Full Text] [Related]
7. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature. Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416 [TBL] [Abstract][Full Text] [Related]
8. Data-Driven Techniques for Evaluating the Mechanical Strength and Raw Material Effects of Steel Fiber-Reinforced Concrete. Al-Hashem MN; Amin MN; Ahmad W; Khan K; Ahmad A; Ehsan S; Al-Ahmad QMS; Qadir MG Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234267 [TBL] [Abstract][Full Text] [Related]
9. Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete. Dai L; Wu X; Zhou M; Ahmad W; Ali M; Sabri MMS; Salmi A; Ewais DYZ Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806575 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Use of Waste Marble Powder in Concrete and Predicting Its Strength with Different Advanced Algorithms. Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Alabdullah AA; Arab AMA Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744167 [TBL] [Abstract][Full Text] [Related]
11. Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions. Amin MN; Ahmad W; Khan K; Ahmad A; Nazar S; Alabdullah AA Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955144 [TBL] [Abstract][Full Text] [Related]
12. Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete. Anjum M; Khan K; Ahmad W; Ahmad A; Amin MN; Nafees A Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146051 [TBL] [Abstract][Full Text] [Related]
13. Eco-Transformation of construction: Harnessing machine learning and SHAP for crumb rubber concrete sustainability. Habib N; Saqib M; Najeh T; Gamil Y Heliyon; 2024 Mar; 10(5):e26927. PubMed ID: 38463877 [TBL] [Abstract][Full Text] [Related]
14. Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms. Shang M; Li H; Ahmad A; Ahmad W; Ostrowski KA; Aslam F; Joyklad P; Majka TM Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057364 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm. Ahmad A; Farooq F; Niewiadomski P; Ostrowski K; Akbar A; Aslam F; Alyousef R Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33567526 [TBL] [Abstract][Full Text] [Related]
16. Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete. Shi X; Chen S; Wang Q; Lu Y; Ren S; Huang J Gels; 2024 Feb; 10(2):. PubMed ID: 38391478 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete. Khan K; Ahmad W; Amin MN; Aslam F; Ahmad A; Al-Faiad MA Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629456 [TBL] [Abstract][Full Text] [Related]
18. Artificial neural network, machine learning modelling of compressive strength of recycled coarse aggregate based self-compacting concrete. Jagadesh P; Khan AH; Priya BS; Asheeka A; Zoubir Z; Magbool HM; Alam S; Bakather OY PLoS One; 2024; 19(5):e0303101. PubMed ID: 38739642 [TBL] [Abstract][Full Text] [Related]
19. Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature. Ahmad M; Hu JL; Ahmad F; Tang XW; Amjad M; Iqbal MJ; Asim M; Farooq A Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920988 [TBL] [Abstract][Full Text] [Related]
20. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete. Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]