BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35458810)

  • 1. Detection of Human Gait Phases Using Textile Pressure Sensors: A Low Cost and Pervasive Approach.
    Milovic M; Farías G; Fingerhuth S; Pizarro F; Hermosilla G; Yunge D
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multichannel ECG recording from waist using textile sensors.
    Alizadeh Meghrazi M; Tian Y; Mahnam A; Bhattachan P; Eskandarian L; Taghizadeh Kakhki S; Popovic MR; Lankarany M
    Biomed Eng Online; 2020 Jun; 19(1):48. PubMed ID: 32546233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Talking in Respiratory Signals: A Feasibility Study Using Machine Learning and Wearable Textile-Based Sensors.
    Ejupi A; Menon C
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30065177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity.
    Qi K; Wang H; You X; Tao X; Li M; Zhou Y; Zhang Y; He J; Shao W; Cui S
    J Colloid Interface Sci; 2020 Mar; 561():93-103. PubMed ID: 31812870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue Monitoring in Running Using Flexible Textile Wearable Sensors.
    Gholami M; Napier C; Patiño AG; Cuthbert TJ; Menon C
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33003316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MXene-Based Textile Sensors for Wearable Applications.
    Jin C; Bai Z
    ACS Sens; 2022 Apr; 7(4):929-950. PubMed ID: 35322661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms.
    Vu CC; Kim J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30223535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform.
    Potluri S; Chandran AB; Diedrich C; Schega L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns.
    Sunarya U; Sun Hariyani Y; Cho T; Roh J; Hyeong J; Sohn I; Kim S; Park C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting Resistive Matrix Technology to Build a Stretchable Sensorised Sock for Gait Analysis in Daily Life.
    Carbonaro N; Arcarisi L; Marinai C; Laurino M; Di Rienzo F; Vallati C; Tognetti A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of human gait activities using wearable sensors.
    Halim A; Abdellatif A; Awad MI; Atia MRA
    Proc Inst Mech Eng H; 2021 Jun; 235(6):676-687. PubMed ID: 33730894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Load Position and Weight Classification during Carrying Gait Using Wearable Inertial and Electromyographic Sensors.
    Goršič M; Dai B; Novak D
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Systematic Approach to the Design and Characterization of A Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis.
    Tahir AM; Chowdhury MEH; Khandakar A; Al-Hamouz S; Abdalla M; Awadallah S; Reaz MBI; Al-Emadi N
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review.
    Prasanth H; Caban M; Keller U; Courtine G; Ijspeert A; Vallery H; von Zitzewitz J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Characterization of Smart Textile Pressure Sensors.
    Kamara V; Kargwal SK; Constant N; Gordon R; Humphreys G; Mankodiya K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1745-1748. PubMed ID: 31946235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discriminating progressive supranuclear palsy from Parkinson's disease using wearable technology and machine learning.
    De Vos M; Prince J; Buchanan T; FitzGerald JJ; Antoniades CA
    Gait Posture; 2020 Mar; 77():257-263. PubMed ID: 32078894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-Processed Sensing Textiles with Adjustable Sensitivity and Linear Detection Range Enabled by Twisting Structure.
    Hui Z; Chen R; Chang J; Gong Y; Zhang X; Xu H; Sun Y; Zhao Y; Wang L; Zhou R; Ju F; Chen Q; Zhou J; An J; Sun G; Huang W
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12155-12164. PubMed ID: 32053344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Textile-Based Sweat Sensors for Wearable Applications.
    Yin J; Li J; Reddy VS; Ji D; Ramakrishna S; Xu L
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inductive Textile Sensor Design and Validation for a Wearable Monitoring Device.
    Patiño AG; Menon C
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring.
    Vu CC; Kim J
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32331325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.