These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35458825)

  • 1. Adaptive Pedestrian Stride Estimation for Localization: From Multi-Gait Perspective.
    Huang C; Zhang F; Xu Z; Wei J
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds.
    Huang C; Zhang F; Xu Z; Wei J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders.
    Wang Q; Ye L; Luo H; Men A; Zhao F; Huang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Stride-Length Estimation Based on LT-StrideNet for Pedestrian Dead Reckoning Using a Shank-Mounted Sensor.
    Li Y; Zeng G; Wang L; Tan K
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking pattern classification and walking distance estimation algorithms using gait phase information.
    Wang JS; Lin CW; Yang YT; Ho YJ
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2884-92. PubMed ID: 22893370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking.
    Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R
    Front Neurorobot; 2019; 13():57. PubMed ID: 31396072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring Gait Velocity and Stride Length with an Ultrawide Bandwidth Local Positioning System and an Inertial Measurement Unit.
    Singh P; Esposito M; Barrons Z; Clermont CA; Wannop J; Stefanyshyn D
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU.
    Chandel V; Singhal S; Sharma V; Ahmed N; Ghose A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3290-3296. PubMed ID: 31946586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial Sensor-Based Step Length Estimation Model by Means of Principal Component Analysis.
    Vezočnik M; Kamnik R; Juric MB
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphone-Based Pedestrian Dead Reckoning for 3D Indoor Positioning.
    Geng J; Xia L; Xia J; Li Q; Zhu H; Cai Y
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking.
    Arumukhom Revi D; De Rossi SMM; Walsh CJ; Awad LN
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System.
    Fan Q; Zhang H; Pan P; Zhuang X; Jia J; Zhang P; Zhao Z; Zhu G; Tang Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Context-Aware Smartphone-Based 3D Indoor Positioning Using Pedestrian Dead Reckoning.
    Khalili B; Ali Abbaspour R; Chehreghan A; Vesali N
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Pedestrian Dead Reckoning Based on MEMS-IMU for Smartphones.
    Kuang J; Niu X; Chen X
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29724003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy validation of a wearable IMU-based gait analysis in healthy female.
    He Y; Chen Y; Tang L; Chen J; Tang J; Yang X; Su S; Zhao C; Xiao N
    BMC Sports Sci Med Rehabil; 2024 Jan; 16(1):2. PubMed ID: 38167148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of gait parameters using leg velocity for amputee population.
    Aftab Z; Shad R
    PLoS One; 2022; 17(5):e0266726. PubMed ID: 35560138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults.
    Bertoli M; Cereatti A; Trojaniello D; Avanzino L; Pelosin E; Del Din S; Rochester L; Ginis P; Bekkers EMJ; Mirelman A; Hausdorff JM; Della Croce U
    Biomed Eng Online; 2018 May; 17(1):58. PubMed ID: 29739456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Three Motion Capture-Based Algorithms for Spatiotemporal Gait Characteristics: How Do Algorithms Affect Accuracy and Precision of Clinical Outcomes?
    Caron-Laramée A; Walha R; Boissy P; Gaudreault N; Zelovic N; Lebel K
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Pilot Study to Validate a Wearable Inertial Sensor for Gait Assessment in Older Adults with Falls.
    García-Villamil G; Neira-Álvarez M; Huertas-Hoyas E; Ramón-Jiménez A; Rodríguez-Sánchez C
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of a Walking Intervention on Gait Parameters in Older Adults Residing in Long-Term Care: A Randomized Controlled Trial.
    Kalu ME; Dal Bello-Haas V; Hadjistavropoulos T; Thorpe L; Griffin M; Ploeg J; Richardson J
    J Nutr Health Aging; 2021; 25(9):1099-1105. PubMed ID: 34725668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.