These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35458825)

  • 21. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of stride-by-stride spatial gait parameters using inertial measurement unit attached to the shank with inverted pendulum model.
    Mao Y; Ogata T; Ora H; Tanaka N; Miyake Y
    Sci Rep; 2021 Jan; 11(1):1391. PubMed ID: 33446858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters.
    Rudisch J; Jöllenbeck T; Vogt L; Cordes T; Klotzbier TJ; Vogel O; Wollesen B
    Gait Posture; 2021 Mar; 85():55-64. PubMed ID: 33516094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel Drift Reduction Methods in Foot-Mounted PDR System.
    Zhang W; Wei D; Yuan H
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors.
    Brégou Bourgeois A; Mariani B; Aminian K; Zambelli PY; Newman CJ
    Gait Posture; 2014; 39(1):436-42. PubMed ID: 24044970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust Stride Detector from Ankle-Mounted Inertial Sensors for Pedestrian Navigation and Activity Recognition with Machine Learning Approaches.
    Beaufils B; Chazal F; Grelet M; Michel B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A practical step length algorithm using lower limb angular velocities.
    Allseits E; Agrawal V; Lučarević J; Gailey R; Gaunaurd I; Bennett C
    J Biomech; 2018 Jan; 66():137-144. PubMed ID: 29198369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor.
    Lueken M; Loeser J; Weber N; Bollheimer C; Leonhardt S; Ngo C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2655-2665. PubMed ID: 34874862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validity of an inertial sensor-based system for the assessment of spatio-temporal parameters in people with multiple sclerosis.
    Zahn A; Koch V; Schreff L; Oschmann P; Winkler J; Gaßner H; Müller R
    Front Neurol; 2023; 14():1164001. PubMed ID: 37153677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated method to distinguish toe walking strides from normal strides in the gait of idiopathic toe walking children from heel accelerometry data.
    Pendharkar G; Percival P; Morgan D; Lai D
    Gait Posture; 2012 Mar; 35(3):478-82. PubMed ID: 22300731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait and Axial Spondyloarthritis: Comparative Gait Analysis Study Using Foot-Worn Inertial Sensors.
    Soulard J; Vaillant J; Baillet A; Gaudin P; Vuillerme N
    JMIR Mhealth Uhealth; 2021 Nov; 9(11):e27087. PubMed ID: 34751663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gait stride-to-stride variability and foot clearance pattern analysis in Idiopathic Parkinson's Disease and Vascular Parkinsonism.
    Ferreira F; Gago MF; Bicho E; Carvalho C; Mollaei N; Rodrigues L; Sousa N; Rodrigues PP; Ferreira C; Gama J
    J Biomech; 2019 Jul; 92():98-104. PubMed ID: 31182234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and validation of an accelerometer-based method for quantifying gait events.
    Boutaayamou M; Schwartz C; Stamatakis J; Denoël V; Maquet D; Forthomme B; Croisier JL; Macq B; Verly JG; Garraux G; Brüls O
    Med Eng Phys; 2015 Feb; 37(2):226-32. PubMed ID: 25618221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Walking speed estimation using foot-mounted inertial sensors: comparing machine learning and strap-down integration methods.
    Mannini A; Sabatini AM
    Med Eng Phys; 2014 Oct; 36(10):1312-21. PubMed ID: 25199588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indoor Trajectory Reconstruction of Walking, Jogging, and Running Activities Based on a Foot-Mounted Inertial Pedestrian Dead-Reckoning System.
    Ceron JD; Martindale CF; López DM; Kluge F; Eskofier BM
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inertial Measurement Unit-Based Estimation of Foot Trajectory for Clinical Gait Analysis.
    Hori K; Mao Y; Ono Y; Ora H; Hirobe Y; Sawada H; Inaba A; Orimo S; Miyake Y
    Front Physiol; 2019; 10():1530. PubMed ID: 31998138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of excess body weight on walking at the preferred speed.
    Błaszczyk JW; Plewa M; Cieślinska-Swider J; Bacik B; Zahorska-Markiewicz B; Markiewicz A
    Acta Neurobiol Exp (Wars); 2011; 71(4):528-40. PubMed ID: 22237498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Focusing on heel strike improves toe clearance in people with Parkinson's disease: an observational pilot study.
    Ginis P; Pirani R; Basaia S; Ferrari A; Chiari L; Heremans E; Canning CG; Nieuwboer A
    Physiotherapy; 2017 Dec; 103(4):485-490. PubMed ID: 28784427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Step-Detection and Adaptive Step-Length Estimation for Pedestrian Dead-Reckoning at Various Walking Speeds Using a Smartphone.
    Ho NH; Truong PH; Jeong GM
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.