These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 35458875)
1. Heart Rate Variability from Wearable Photoplethysmography Systems: Implications in Sleep Studies at High Altitude. Castiglioni P; Meriggi P; Di Rienzo M; Lombardi C; Parati G; Faini A Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458875 [TBL] [Abstract][Full Text] [Related]
2. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. Jeyhani V; Mahdiani S; Peltokangas M; Vehkaoja A Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5952-5. PubMed ID: 26737647 [TBL] [Abstract][Full Text] [Related]
3. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects. Weinschenk SW; Beise RD; Lorenz J Eur J Appl Physiol; 2016 Aug; 116(8):1527-35. PubMed ID: 27278521 [TBL] [Abstract][Full Text] [Related]
4. Information-Based Similarity of Ordinal Pattern Sequences as a Novel Descriptor in Obstructive Sleep Apnea Screening Based on Wearable Photoplethysmography Bracelets. Chen M; Wu S; Chen T; Wang C; Liu G Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551056 [TBL] [Abstract][Full Text] [Related]
5. Validity of Ultra-Short-Term HRV Analysis Using PPG-A Preliminary Study. Taoum A; Bisiaux A; Tilquin F; Le Guillou Y; Carrault G Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298346 [TBL] [Abstract][Full Text] [Related]
6. Toward Hypertension Prediction Based on PPG-Derived HRV Signals: a Feasibility Study. Lan KC; Raknim P; Kao WF; Huang JH J Med Syst; 2018 Apr; 42(6):103. PubMed ID: 29680866 [TBL] [Abstract][Full Text] [Related]
7. Pitfall of heart rate variability analyses for autonomic nervous system activity with photoplethysmography. Nakamura H; Tagawa M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1-4. PubMed ID: 31945831 [TBL] [Abstract][Full Text] [Related]
8. Pulse transit time and heart rate variability in sleep staging. Shahrbabaki SS; Ahmed B; Penzel T; Cvetkovic D Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3469-3472. PubMed ID: 28269047 [TBL] [Abstract][Full Text] [Related]
9. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals. Bolanos M; Nazeran H; Haltiwanger E Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618 [TBL] [Abstract][Full Text] [Related]
10. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review. Georgiou K; Larentzakis AV; Khamis NN; Alsuhaibani GI; Alaska YA; Giallafos EJ Folia Med (Plovdiv); 2018 Mar; 60(1):7-20. PubMed ID: 29668452 [TBL] [Abstract][Full Text] [Related]
11. Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography. Selvaraj N; Jaryal A; Santhosh J; Deepak KK; Anand S J Med Eng Technol; 2008; 32(6):479-84. PubMed ID: 18663635 [TBL] [Abstract][Full Text] [Related]
12. Linear and fractal heart rate dynamics during sleep at high altitude. Investigation with textile technology. Di Rienzo M; Castiglioni P; Rizzo F; Faini A; Mazzoleni P; Lombardi C; Meriggi P; Parati G; Methods Inf Med; 2010; 49(5):521-5. PubMed ID: 20582387 [TBL] [Abstract][Full Text] [Related]
13. Limitations of oximetry to measure heart rate variability measures. Lu G; Yang F Cardiovasc Eng; 2009 Sep; 9(3):119-25. PubMed ID: 19728090 [TBL] [Abstract][Full Text] [Related]
14. Multimodal Assessment of the Pulse Rate Variability Analysis Module of a Photoplethysmography-Based Telemedicine System. Antali F; Kulin D; Lucz KI; Szabó B; Szűcs L; Kulin S; Miklós Z Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450986 [TBL] [Abstract][Full Text] [Related]
15. Methodological considerations in calculating heart rate variability based on wearable device heart rate samples. Chen HK; Hu YF; Lin SF Comput Biol Med; 2018 Nov; 102():396-401. PubMed ID: 30177403 [TBL] [Abstract][Full Text] [Related]
16. Validation of Photoplethysmography Using a Mobile Phone Application for the Assessment of Heart Rate Variability in the Context of Heart Rate Variability-Biofeedback. van Dijk W; Huizink AC; Oosterman M; Lemmers-Jansen ILJ; de Vente W Psychosom Med; 2023 Sep; 85(7):568-576. PubMed ID: 37678565 [TBL] [Abstract][Full Text] [Related]
17. Associations Between Heart Rate Variability Measured With a Wrist-Worn Sensor and Older Adults' Physical Function: Observational Study. Graham SA; Jeste DV; Lee EE; Wu TC; Tu X; Kim HC; Depp CA JMIR Mhealth Uhealth; 2019 Oct; 7(10):e13757. PubMed ID: 31647469 [TBL] [Abstract][Full Text] [Related]
18. Real-Time Evaluation of Time-Domain Pulse Rate Variability Parameters in Different Postures and Breathing Patterns Using Wireless Photoplethysmography Sensor: Towards Remote Healthcare in Low-Resource Communities. Pineda-Alpizar F; Arriola-Valverde S; Vado-Chacón M; Sossa-Rojas D; Liu H; Zheng D Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177450 [TBL] [Abstract][Full Text] [Related]
19. A quality metric for heart rate variability from photoplethysmogram sensor data. Zanon M; Kriara L; Lipsmeier F; Nobbs D; Chatham C; Hipp J; Lindemann M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():706-709. PubMed ID: 33018085 [TBL] [Abstract][Full Text] [Related]
20. Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea. Khandoker AH; Karmakar CK; Palaniswami M Med Eng Phys; 2011 Mar; 33(2):204-9. PubMed ID: 20980188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]