BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35458883)

  • 1. Validation of Continuous Monitoring System for Epileptic Users in Outpatient Settings.
    Zambrana-Vinaroz D; Vicente-Samper JM; Sabater-Navarro JM
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Epileptic Seizure Prediction System Based on Machine Learning Techniques Using ECG, PPG and EEG Signals.
    Zambrana-Vinaroz D; Vicente-Samper JM; Manrique-Cordoba J; Sabater-Navarro JM
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals.
    Bolanos M; Nazeran H; Haltiwanger E
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.
    Jeyhani V; Mahdiani S; Peltokangas M; Vehkaoja A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5952-5. PubMed ID: 26737647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring and detecting atrial fibrillation using wearable technology.
    Nemati S; Ghassemi MM; Ambai V; Isakadze N; Levantsevych O; Shah A; Clifford GD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3394-3397. PubMed ID: 28269032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BioWatch - a wrist watch based signal acquisition system for physiological signals including blood pressure.
    Thomas SS; Nathan V; Chengzhi Zong ; Akinbola E; Aroul AL; Philipose L; Soundarapandian K; Xiangrong Shi ; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2286-9. PubMed ID: 25570444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A clip-free eyeglasses-based wearable monitoring device for measuring photoplethysmograhic signals.
    Zheng Y; Leung B; Sy S; Zhang Y; Poon CC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5022-5. PubMed ID: 23367056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Hypertension Prediction Based on PPG-Derived HRV Signals: a Feasibility Study.
    Lan KC; Raknim P; Kao WF; Huang JH
    J Med Syst; 2018 Apr; 42(6):103. PubMed ID: 29680866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects.
    Lu G; Yang F; Taylor JA; Stein JF
    J Med Eng Technol; 2009; 33(8):634-41. PubMed ID: 19848857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
    Reyes I; Nazeran H; Franco M; Haltiwanger E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2092-5. PubMed ID: 23366333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J; Li Y; Ding XR; Dai WX; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodological considerations in calculating heart rate variability based on wearable device heart rate samples.
    Chen HK; Hu YF; Lin SF
    Comput Biol Med; 2018 Nov; 102():396-401. PubMed ID: 30177403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artifacts in pulse transit time measurements using standard patient monitoring equipment.
    Bennis FC; van Pul C; van den Bogaart JJL; Andriessen P; Kramer BW; Delhaas T
    PLoS One; 2019; 14(6):e0218784. PubMed ID: 31226142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring Using Wearable Sensors.
    Nathan V; Jafari R
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1834-1846. PubMed ID: 29990023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations of oximetry to measure heart rate variability measures.
    Lu G; Yang F
    Cardiovasc Eng; 2009 Sep; 9(3):119-25. PubMed ID: 19728090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.
    Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H
    Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of error between the heartbeat intervals measured form photoplethysmogram and electrocardiogram by synchronisation.
    Kuntamalla S; Lekkala RGR
    J Med Eng Technol; 2018 Jul; 42(5):389-396. PubMed ID: 30324857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Camera-Based Seismocardiogram for Heart Rate Variability Monitoring.
    Liu L; Yu D; Lu H; Shan C; Wang W
    IEEE J Biomed Health Inform; 2024 May; 28(5):2794-2805. PubMed ID: 38412075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of using different algorithms and fiducial points for the detection of interbeat intervals, and different sampling rates on the assessment of pulse rate variability from photoplethysmography.
    Mejía-Mejía E; May JM; Kyriacou PA
    Comput Methods Programs Biomed; 2022 May; 218():106724. PubMed ID: 35255373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.