These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35458924)

  • 1. Chlorophyll-a Pigment Measurement of Spirulina in Algal Growth Monitoring Using Portable Pulsed LED Fluorescence Lidar System.
    Cadondon JG; Ong PMB; Vallar EA; Shiina T; Galvez MCD
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial experimental multi-wavelength EEM (Excitation Emission Matrix) fluorescence lidar detection and classification of atmospheric pollen with potential applications toward real-time bioaerosols monitoring.
    Saito Y; Kawai K
    Opt Express; 2022 May; 30(11):19922-19929. PubMed ID: 36221755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological and remote sensing perspectives of pigmentation in coral reef organisms.
    Hedley JD; Mumby PJ
    Adv Mar Biol; 2002; 43():277-317. PubMed ID: 12154614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser Remote Sensing of Lake Kinneret by Compact Fluorescence LiDAR.
    Pershin SM; Katsnelson BG; Grishin MY; Lednev VN; Zavozin VA; Ostrovsky I
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the effect of the incidence angle on chlorophyll fluorescence intensity based on laser-induced fluorescence lidar.
    Yang J; Cheng Y; Du L; Gong W; Shi S; Sun J; Chen B
    Opt Express; 2019 Apr; 27(9):12541-12550. PubMed ID: 31052794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.
    Saito Y; Kakuda K; Yokoyama M; Kubota T; Tomida T; Park HD
    Appl Opt; 2016 Aug; 55(24):6727-34. PubMed ID: 27556995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical degradation of oil products in seawater monitored by 3D excitation emission matrix (EEM) fluorescence spectroscopy: implications for coloured dissolved organic matter (CDOM) studies.
    de Bruyn W; Chang D; Bui T; Hok S; Clark C
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34777-34787. PubMed ID: 30324377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter.
    Hoge FE; Lyon PE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 2005 May; 44(14):2857-62. PubMed ID: 15943339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of Mie-Fluorescence-Raman Lidar to Profile Chlorophyll
    Zhao H; Zhou Y; Wu H; Kutser T; Han Y; Ma R; Yao Z; Zhao H; Xu P; Jiang C; Gu Q; Ma S; Wu L; Chen Y; Sheng H; Wan X; Chen W; Chen X; Bai J; Wu L; Liu Q; Sun W; Yang S; Hu M; Liu C; Liu D
    Environ Sci Technol; 2023 Sep; 57(38):14226-14236. PubMed ID: 37713595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Raman normalization of airborne laser fluorosensor measurements: a computer model study.
    Poole LR; Esaias WE
    Appl Opt; 1982 Oct; 21(20):3756-61. PubMed ID: 20396311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary measurements of fluorescent aerosol number concentrations using a laser-induced fluorescence lidar.
    Rao Z; He T; Hua D; Wang Y; Wang X; Chen Y; Le J
    Appl Opt; 2018 Sep; 57(25):7211-7215. PubMed ID: 30182981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced chlorophyll fluorescence: a technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant.
    Pandey JK; Gopal R
    J Fluoresc; 2011 Mar; 21(2):785-91. PubMed ID: 21128104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflectance and fluorescence characterization of maize species using field laboratory measurements and lidar remote sensing.
    Zhao G; Duan Z; Ming L; Li Y; Chen R; Hu J; Svanberg S; Han Y
    Appl Opt; 2016 Jul; 55(19):5273-9. PubMed ID: 27409221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collection of excitation-emission-matrix fluorescence of aerosol-candidate-substances and its application to fluorescence lidar monitoring.
    Saito Y; Hosokawa T; Shiraishi K
    Appl Opt; 2022 Jan; 61(3):653-660. PubMed ID: 35200768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical emission diagnosis of carbon nanoparticle-incorporated chlorophyll for sensing applications.
    Swapna MS; Raj V; Saritha Devi HV; Sankararaman S
    Photochem Photobiol Sci; 2019 Jun; 18(6):1382-1388. PubMed ID: 30919854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter.
    Chen W; Westerhoff P; Leenheer JA; Booksh K
    Environ Sci Technol; 2003 Dec; 37(24):5701-10. PubMed ID: 14717183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis.
    Rakhimberdieva MG; Boichenko VA; Karapetyan NV; Stadnichuk IN
    Biochemistry; 2001 Dec; 40(51):15780-8. PubMed ID: 11747455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromophoric dissolved organic matter influence correction of algal concentration measurements using three-dimensional fluorescence spectra.
    Xiaoling Z; Gaofang Y; Nanjing Z; Ruifang Y; Jianguo L; Wenqing L
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():405-411. PubMed ID: 30530100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis.
    Karapetyan NV; Dorra D; Schweitzer G; Bezsmertnaya IN; Holzwarth AR
    Biochemistry; 1997 Nov; 36(45):13830-7. PubMed ID: 9374860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.