BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35459047)

  • 1. Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants.
    Fernandes C; Taurino I
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fully Biodegradable Battery for Self-Powered Transient Implants.
    Huang X; Wang D; Yuan Z; Xie W; Wu Y; Li R; Zhao Y; Luo D; Cen L; Chen B; Wu H; Xu H; Sheng X; Zhang M; Zhao L; Yin L
    Small; 2018 Jul; 14(28):e1800994. PubMed ID: 29806124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway of transient electronics towards connected biomedical applications.
    Dutta A; Cheng H
    Nanoscale; 2023 Mar; 15(9):4236-4249. PubMed ID: 36688506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully Biodegradable and Long-Term Operational Primary Zinc Batteries as Power Sources for Electronic Medicine.
    Huang X; Hou H; Yu B; Bai J; Guan Y; Wang L; Chen K; Wang X; Sun P; Deng Y; Liu S; Cai X; Wang Y; Peng J; Sheng X; Xiong W; Yin L
    ACS Nano; 2023 Mar; 17(6):5727-5739. PubMed ID: 36897770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Futuristic medical implants using bioresorbable materials and devices.
    Chatterjee S; Saxena M; Padmanabhan D; Jayachandra M; Pandya HJ
    Biosens Bioelectron; 2019 Oct; 142():111489. PubMed ID: 31295710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications.
    Cha GD; Kang D; Lee J; Kim DH
    Adv Healthc Mater; 2019 Jun; 8(11):e1801660. PubMed ID: 30957984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials and Devices for Biodegradable and Soft Biomedical Electronics.
    Li R; Wang L; Yin L
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications.
    Rybak D; Su YC; Li Y; Ding B; Lv X; Li Z; Yeh YC; Nakielski P; Rinoldi C; Pierini F; Dodda JM
    Nanoscale; 2023 May; 15(18):8044-8083. PubMed ID: 37070933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Materials and processing approaches for foundry-compatible transient electronics.
    Chang JK; Fang H; Bower CA; Song E; Yu X; Rogers JA
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5522-E5529. PubMed ID: 28652373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices.
    Ryu H; Seo MH; Rogers JA
    Adv Healthc Mater; 2021 Sep; 10(17):e2002236. PubMed ID: 33586341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.
    Yu X; Shou W; Mahajan BK; Huang X; Pan H
    Adv Mater; 2018 Jul; 30(28):e1707624. PubMed ID: 29736971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of tungsten on uptake, transport and subcellular distribution of molybdenum in oilseed rape at two different molybdenum levels.
    Qin S; Sun X; Hu C; Tan Q; Zhao X; Xu S
    Plant Sci; 2017 Mar; 256():87-93. PubMed ID: 28167042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics.
    Park S; Heo SW; Lee W; Inoue D; Jiang Z; Yu K; Jinno H; Hashizume D; Sekino M; Yokota T; Fukuda K; Tajima K; Someya T
    Nature; 2018 Sep; 561(7724):516-521. PubMed ID: 30258137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully printed and self-compensated bioresorbable electrochemical devices based on galvanic coupling for continuous glucose monitoring.
    Li J; Liu J; Wu Z; Shang X; Li Y; Huo W; Huang X
    Sci Adv; 2023 Jul; 9(29):eadi3839. PubMed ID: 37467335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
    Jeong YR; Lee G; Park H; Ha JS
    Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Sewing Approach to the Fabrication of Eco/bioresorbable Electronics.
    Wu Y; Rytkin E; Bimrose M; Li S; Choi YS; Lee G; Wang Y; Tang L; Madrid M; Wickerson G; Chang JK; Gu J; Zhang Y; Liu J; Tawfick S; Huang Y; King WP; Efimov IR; Rogers JA
    Small; 2023 Dec; 19(49):e2305017. PubMed ID: 37528504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A physically transient form of silicon electronics.
    Hwang SW; Tao H; Kim DH; Cheng H; Song JK; Rill E; Brenckle MA; Panilaitis B; Won SM; Kim YS; Song YM; Yu KJ; Ameen A; Li R; Su Y; Yang M; Kaplan DL; Zakin MR; Slepian MJ; Huang Y; Omenetto FG; Rogers JA
    Science; 2012 Sep; 337(6102):1640-4. PubMed ID: 23019646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of tungsten and molybdenum on growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei.
    Plugge CM; Jiang B; de Bok FA; Tsai C; Stams AJ
    Arch Microbiol; 2009 Jan; 191(1):55-61. PubMed ID: 18795263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.