These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35459070)

  • 1. AI Prediction of Brain Signals for Human Gait Using BCI Device and FBG Based Sensorial Platform for Plantar Pressure Measurements.
    Butt AM; Alsaffar H; Alshareef M; Qureshi KK
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-Based Eye Movement Recognition Using Brain-Computer Interface and Random Forests.
    Antoniou E; Bozios P; Christou V; Tzimourta KD; Kalafatakis K; G Tsipouras M; Giannakeas N; Tzallas AT
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33801663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction.
    Chen B; Chen C; Hu J; Sayeed Z; Qi J; Darwiche HF; Little BE; Lou S; Darwish M; Foote C; Palacio-Lascano C
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks.
    Hamid H; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research on gait recognition and prediction based on optimized machine learning algorithm].
    Gao J; Ma C; Su H; Wang S; Xu X; Yao J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):103-111. PubMed ID: 35231971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of gait intention from pre-movement EEG signals: a feasibility study.
    Shafiul Hasan SM; Siddiquee MR; Atri R; Ramon R; Marquez JS; Bai O
    J Neuroeng Rehabil; 2020 Apr; 17(1):50. PubMed ID: 32299460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding Brain Signals to Classify Gait Direction Anticipation.
    Vaghei Y; Park EJ; Arzanpour S
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():309-312. PubMed ID: 36086221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface, interaction, and intelligence in generalized brain-computer interfaces.
    Gao X; Wang Y; Chen X; Gao S
    Trends Cogn Sci; 2021 Aug; 25(8):671-684. PubMed ID: 34116918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An artificial intelligence that increases simulated brain-computer interface performance.
    Olsen S; Zhang J; Liang KF; Lam M; Riaz U; Kao JC
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33978599
    [No Abstract]   [Full Text] [Related]  

  • 10. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods.
    Ayoobi N; Sharifrazi D; Alizadehsani R; Shoeibi A; Gorriz JM; Moosaei H; Khosravi A; Nahavandi S; Gholamzadeh Chofreh A; Goni FA; Klemeš JJ; Mosavi A
    Results Phys; 2021 Aug; 27():104495. PubMed ID: 34221854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Artificial Intelligence in Decoding Speech from EEG Signals: A Scoping Review.
    Shah U; Alzubaidi M; Mohsen F; Abd-Alrazaq A; Alam T; Househ M
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146323
    [No Abstract]   [Full Text] [Related]  

  • 12. A fresh look at functional link neural network for motor imagery-based brain-computer interface.
    Hettiarachchi IT; Babaei T; Nguyen T; Lim CP; Nahavandi S
    J Neurosci Methods; 2018 Jul; 305():28-35. PubMed ID: 29733940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network.
    Luo TJ; Zhou CL; Chao F
    BMC Bioinformatics; 2018 Sep; 19(1):344. PubMed ID: 30268089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network.
    Tortora S; Ghidoni S; Chisari C; Micera S; Artoni F
    J Neural Eng; 2020 Jul; 17(4):046011. PubMed ID: 32480381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals.
    Batres-Mendoza P; Montoro-Sanjose CR; Guerra-Hernandez EI; Almanza-Ojeda DL; Rostro-Gonzalez H; Romero-Troncoso RJ; Ibarra-Manzano MA
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.
    Pradhan C; Wuehr M; Akrami F; Neuhaeusser M; Huth S; Brandt T; Jahn K; Schniepp R
    J Electromyogr Kinesiol; 2015 Apr; 25(2):413-22. PubMed ID: 25725811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
    Adamidi ES; Mitsis K; Nikita KS
    Comput Struct Biotechnol J; 2021; 19():2833-2850. PubMed ID: 34025952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.