These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35459319)

  • 21. Relativistic Density Functional Calculations of Hyperfine Coupling with Variational versus Perturbational Treatment of Spin-Orbit Coupling.
    Verma P; Autschbach J
    J Chem Theory Comput; 2013 Apr; 9(4):1932-48. PubMed ID: 26583544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. II. Quantitative results in HX (X = H,F,Cl,Br,I) compounds.
    Aucar IA; Gómez SS; Melo JI; Giribet CC; Ruiz de Azúa MC
    J Chem Phys; 2013 Apr; 138(13):134107. PubMed ID: 23574208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Density-functional calculations of relativistic spin-orbit effects on nuclear magnetic shielding in paramagnetic molecules.
    Pennanen TO; Vaara J
    J Chem Phys; 2005 Nov; 123(17):174102. PubMed ID: 16375512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyperfine interactions and internal rotation in methanol.
    Lankhaar B; Groenenboom GC; van der Avoird A
    J Chem Phys; 2016 Dec; 145(24):244301. PubMed ID: 28010069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the use of effective core potentials in the calculation of magnetic properties, such as magnetizabilites and magnetic shieldings.
    van Wüllen C
    J Chem Phys; 2012 Mar; 136(11):114110. PubMed ID: 22443751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory.
    Neese F
    J Chem Phys; 2007 Oct; 127(16):164112. PubMed ID: 17979324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zeroth order regular approximation approach to parity violating nuclear magnetic resonance shielding tensors.
    Nahrwold S; Berger R
    J Chem Phys; 2009 Jun; 130(21):214101. PubMed ID: 19508050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron correlation and relativistic effects in the secondary NMR isotope shifts of CSe2.
    Lantto P; Kangasvieri S; Vaara J
    Phys Chem Chem Phys; 2013 Oct; 15(40):17468-78. PubMed ID: 24025992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.
    Schreckenbach G
    Inorg Chem; 2002 Dec; 41(25):6560-72. PubMed ID: 12470051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach.
    Cheng L; Gauss J; Stanton JF
    J Chem Phys; 2013 Aug; 139(5):054105. PubMed ID: 23927241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method.
    Beer M; Kussmann J; Ochsenfeld C
    J Chem Phys; 2011 Feb; 134(7):074102. PubMed ID: 21341823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An atomic mean-field spin-orbit approach within exact two-component theory for a non-perturbative treatment of spin-orbit coupling.
    Liu J; Cheng L
    J Chem Phys; 2018 Apr; 148(14):144108. PubMed ID: 29655325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms.
    Maldonado AF; Aucar GA
    J Phys Chem A; 2014 Sep; 118(36):7863-75. PubMed ID: 25110942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spin Currents Induced in Open-Shell Molecules by Static and Uniform Magnetic and Electric Fields in the Presence of a Spin-Orbit Coupling Interaction and Conservation Law.
    Summa FF
    J Chem Theory Comput; 2023 May; 19(9):2491-2501. PubMed ID: 37104848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breit interaction contribution to parity violating potentials in chiral molecules containing light nuclei.
    Berger R
    J Chem Phys; 2008 Oct; 129(15):154105. PubMed ID: 19045174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron-Spin Structure and Metal-Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts.
    Bora PL; Novotný J; Ruud K; Komorovsky S; Marek R
    J Chem Theory Comput; 2019 Jan; 15(1):201-214. PubMed ID: 30485092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of the LRESC Model on top of DFT Functionals for Relativistic NMR Shielding Calculations.
    Melo JI; Maldonado AF; Aucar GA
    J Chem Inf Model; 2020 Feb; 60(2):722-730. PubMed ID: 31877038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines.
    Novotný J; Přichystal D; Sojka M; Komorovsky S; Nečas M; Marek R
    Inorg Chem; 2018 Jan; 57(2):641-652. PubMed ID: 29185727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.