These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35459326)

  • 1. Beginnings of exciton condensation in coronene analog of graphene double layer.
    Sager LM; Schouten AO; Mazziotti DA
    J Chem Phys; 2022 Apr; 156(15):154702. PubMed ID: 35459326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton Condensation in Molecular-Scale van der Waals Stacks.
    Schouten AO; Sager LM; Mazziotti DA
    J Phys Chem Lett; 2021 Oct; 12(40):9906-9911. PubMed ID: 34612652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers.
    Wang Z; Rhodes DA; Watanabe K; Taniguchi T; Hone JC; Shan J; Mak KF
    Nature; 2019 Oct; 574(7776):76-80. PubMed ID: 31578483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose-Einstein condensation and indirect excitons: a review.
    Combescot M; Combescot R; Dubin F
    Rep Prog Phys; 2017 Jun; 80(6):066501. PubMed ID: 28355164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe
    Nayak PK; Horbatenko Y; Ahn S; Kim G; Lee JU; Ma KY; Jang AR; Lim H; Kim D; Ryu S; Cheong H; Park N; Shin HS
    ACS Nano; 2017 Apr; 11(4):4041-4050. PubMed ID: 28363013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning moiré excitons in Janus heterobilayers for high-temperature Bose-Einstein condensation.
    Guo H; Zhang X; Lu G
    Sci Adv; 2022 Oct; 8(40):eabp9757. PubMed ID: 36206334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Interlayer-Coherent Quantum Hall States in Twisted Bilayer Graphene.
    Kim D; Kang B; Choi YB; Watanabe K; Taniguchi T; Lee GH; Cho GY; Kim Y
    Nano Lett; 2023 Jan; 23(1):163-169. PubMed ID: 36524972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures.
    Alexeev EM; Ruiz-Tijerina DA; Danovich M; Hamer MJ; Terry DJ; Nayak PK; Ahn S; Pak S; Lee J; Sohn JI; Molas MR; Koperski M; Watanabe K; Taniguchi T; Novoselov KS; Gorbachev RV; Shin HS; Fal'ko VI; Tartakovskii AI
    Nature; 2019 Mar; 567(7746):81-86. PubMed ID: 30842637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Interlayer Exciton in WS
    Ma X; Fu S; Ding J; Liu M; Bian A; Hong F; Sun J; Zhang X; Yu X; He D
    Nano Lett; 2021 Oct; 21(19):8035-8042. PubMed ID: 34605657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Twist-angle-dependent interlayer exciton diffusion in WS
    Yuan L; Zheng B; Kunstmann J; Brumme T; Kuc AB; Ma C; Deng S; Blach D; Pan A; Huang L
    Nat Mater; 2020 Jun; 19(6):617-623. PubMed ID: 32393806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent many-body exciton in van der Waals antiferromagnet NiPS
    Kang S; Kim K; Kim BH; Kim J; Sim KI; Lee JU; Lee S; Park K; Yun S; Kim T; Nag A; Walters A; Garcia-Fernandez M; Li J; Chapon L; Zhou KJ; Son YW; Kim JH; Cheong H; Park JG
    Nature; 2020 Jul; 583(7818):785-789. PubMed ID: 32690938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic-2D Material Heterostructures: A Promising Platform for Exciton Condensation and Multiplication.
    Ulman K; Quek SY
    Nano Lett; 2021 Oct; 21(20):8888-8894. PubMed ID: 34661417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano Resonance and Incoherent Interlayer Excitons in Molecular van der Waals Heterostructures.
    Lien-Medrano CR; Bonafé FP; Yam CY; Palma CA; Sánchez CG; Frauenheim T
    Nano Lett; 2022 Feb; 22(3):911-917. PubMed ID: 35040646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast dynamics in van der Waals heterostructures.
    Jin C; Ma EY; Karni O; Regan EC; Wang F; Heinz TF
    Nat Nanotechnol; 2018 Nov; 13(11):994-1003. PubMed ID: 30397296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct formation of interlayer exciton in two-dimensional van der Waals heterostructures.
    Niu X; Xiao S; Sun D; Shi A; Zhou Z; Chen W; Li X; Wang J
    Mater Horiz; 2021 Aug; 8(8):2208-2215. PubMed ID: 34846425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valley-polarized exciton currents in a van der Waals heterostructure.
    Unuchek D; Ciarrocchi A; Avsar A; Sun Z; Watanabe K; Taniguchi T; Kis A
    Nat Nanotechnol; 2019 Dec; 14(12):1104-1109. PubMed ID: 31636411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices.
    Cao Y; Fatemi V; Demir A; Fang S; Tomarken SL; Luo JY; Sanchez-Yamagishi JD; Watanabe K; Taniguchi T; Kaxiras E; Ashoori RC; Jarillo-Herrero P
    Nature; 2018 Apr; 556(7699):80-84. PubMed ID: 29512654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twist Angle-Dependent Interlayer Exciton Lifetimes in van der Waals Heterostructures.
    Choi J; Florian M; Steinhoff A; Erben D; Tran K; Kim DS; Sun L; Quan J; Claassen R; Majumder S; Hollingsworth JA; Taniguchi T; Watanabe K; Ueno K; Singh A; Moody G; Jahnke F; Li X
    Phys Rev Lett; 2021 Jan; 126(4):047401. PubMed ID: 33576642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoelectric transport in coupled double layers with interlayer excitons and exciton condensation.
    Hu J; Rigosi AF; Newell DB; Chen YP
    Phys Rev B; 2020 Dec; 102(23):235304. PubMed ID: 34485786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy.
    Wang K; Huang B; Tian M; Ceballos F; Lin MW; Mahjouri-Samani M; Boulesbaa A; Puretzky AA; Rouleau CM; Yoon M; Zhao H; Xiao K; Duscher G; Geohegan DB
    ACS Nano; 2016 Jul; 10(7):6612-22. PubMed ID: 27309275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.