These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35459492)

  • 1. Inter-comparisons of VOC oxidation mechanisms based on box model: A focus on OH reactivity.
    Yang X; Yuan B; Peng Z; Peng Y; Wu C; Yang S; Li J; Shao M
    J Environ Sci (China); 2022 Apr; 114():286-296. PubMed ID: 35459492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions.
    Derwent R
    J Air Waste Manag Assoc; 2017 Jul; 67(7):789-796. PubMed ID: 28278034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants.
    Surratt JD; Lin YH; Arashiro M; Vizuete WG; Zhang Z; Gold A; Jaspers I; Fry RC
    Res Rep Health Eff Inst; 2019 Mar; 2019(198):1-54. PubMed ID: 31872748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data.
    Batterman S; Su FC; Li S; Mukherjee B; Jia C;
    Res Rep Health Eff Inst; 2014 Jun; (181):3-63. PubMed ID: 25145040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of summertime O
    Wang X; Yin S; Zhang R; Yuan M; Ying Q
    Sci Total Environ; 2022 Mar; 813():152449. PubMed ID: 34942256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant decreases in the volatile organic compound concentration, atmospheric oxidation capacity and photochemical reactivity during the National Day holiday over a suburban site in the North China Plain.
    Yang Y; Wang Y; Yao D; Zhao S; Yang S; Ji D; Sun J; Wang Y; Liu Z; Hu B; Zhang R; Wang Y
    Environ Pollut; 2020 Aug; 263(Pt A):114657. PubMed ID: 33618483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface O
    Wang Y; Guo H; Zou S; Lyu X; Ling Z; Cheng H; Zeren Y
    Environ Pollut; 2018 Mar; 234():155-166. PubMed ID: 29175477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Season-wise analyses of VOCs, hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year.
    Kumar V; Sinha V
    Chemosphere; 2021 Nov; 283():131184. PubMed ID: 34146869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ozone Formation and Key VOCs of a Continuous Summertime O
    Sun XY; Zhao M; Shen HQ; Liu Y; Du MY; Zhang WJ; Xu HY; Fan GL; Gong HL; Li QS; Li DQ; Gao XM; Zhang LN
    Huan Jing Ke Xue; 2022 Feb; 43(2):686-695. PubMed ID: 35075842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic modeling of PAMS VOC observation.
    Chen SP; Liu TH; Chen TF; Yang CF; Wang JL; Chang JS
    Environ Sci Technol; 2010 Jun; 44(12):4635-44. PubMed ID: 20476789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile organic compounds speciation and their influence on ozone formation potential in an industrialized urban area in Brazil.
    Galvão ES; Santos JM; Reis Junior NC; Stuetz RM
    Environ Technol; 2016 Sep; 37(17):2133-48. PubMed ID: 26776458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China.
    Zhang Y; Li R; Fu H; Zhou D; Chen J
    J Environ Sci (China); 2018 Sep; 71():233-248. PubMed ID: 30195682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of ambient volatile organic compounds (VOCs) measured in Shanghai, China.
    Cai CJ; Geng FH; Tie XX; Yu Q; Peng L; Zhou GQ
    Sensors (Basel); 2010; 10(8):7843-62. PubMed ID: 22163629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions.
    Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R
    J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical trajectory modeling of ozone concentrations in Hong Kong.
    Cheng HR; Saunders SM; Guo H; Louie PK; Jiang F
    Environ Pollut; 2013 Sep; 180():101-10. PubMed ID: 23747818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Update on volatile organic compound (VOC) source profiles and ozone formation potential in synthetic resins industry in China.
    Ma Y; Fu S; Gao S; Zhang S; Che X; Wang Q; Jiao Z
    Environ Pollut; 2021 Dec; 291():118253. PubMed ID: 34597734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removing volatile organic compounds in cooking fume by nano-sized TiO
    Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH
    Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tower-based measurements of NMHCs and OVOCs in the Pearl River Delta: Vertical distribution, source analysis and chemical reactivity.
    Mo Z; Huang S; Yuan B; Pei C; Song Q; Qi J; Wang M; Wang B; Wang C; Shao M
    Environ Pollut; 2022 Jan; 292(Pt B):118454. PubMed ID: 34737024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Pollution Characteristic and Control Factor Analysis of Atmospheric Ozone During Summer Typical Periods in Linyi, Shandong].
    Yang X; An XY; Liu YQ; Jiang CM; Zhang PC; Li LJ; Zhao SY; Zhang SY
    Huan Jing Ke Xue; 2022 Feb; 43(2):696-706. PubMed ID: 35075843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation.
    Xue L; Wang T; Wang X; Blake DR; Gao J; Nie W; Gao R; Gao X; Xu Z; Ding A; Huang Y; Lee S; Chen Y; Wang S; Chai F; Zhang Q; Wang W
    Environ Pollut; 2014 Dec; 195():39-47. PubMed ID: 25194270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.