These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 35459617)

  • 1. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells.
    Muhtaseb AW; Duan J
    Schizophr Res; 2022 Apr; ():. PubMed ID: 35459617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human stem cell modeling of neuropsychiatric disorders: from polygenicity to convergence.
    Duan J
    Med Rev (2021); 2023 Aug; 3(4):347-350. PubMed ID: 38235404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells.
    Ma N; Zhang JZ; Itzhaki I; Zhang SL; Chen H; Haddad F; Kitani T; Wilson KD; Tian L; Shrestha R; Wu H; Lam CK; Sayed N; Wu JC
    Circulation; 2018 Dec; 138(23):2666-2681. PubMed ID: 29914921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models.
    Haggarty SJ; Silva MC; Cross A; Brandon NJ; Perlis RH
    Mol Cell Neurosci; 2016 Jun; 73():104-15. PubMed ID: 26826498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells.
    LaMarca EA; Powell SK; Akbarian S; Brennand KJ
    Front Pediatr; 2018; 6():82. PubMed ID: 29666786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-based functional evaluation of schizophrenia risk variants.
    Rajarajan P; Flaherty E; Akbarian S; Brennand KJ
    Schizophr Res; 2020 Mar; 217():26-36. PubMed ID: 31277978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function.
    Lai FP; Lau ST; Wong JK; Gui H; Wang RX; Zhou T; Lai WH; Tse HF; Tam PK; Garcia-Barcelo MM; Ngan ES
    Gastroenterology; 2017 Jul; 153(1):139-153.e8. PubMed ID: 28342760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Psychiatric Diseases with Induced Pluripotent Stem Cells.
    van Hugte E; Nadif Kasri N
    Adv Exp Med Biol; 2019; 1192():297-312. PubMed ID: 31705501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "iPSC-derived liver organoids and inherited bleeding disorders: Potential and future perspectives".
    Roman G; Stavik B; Lauritzen KH; Sandset PM; Harrison SP; Sullivan GJ; Chollet ME
    Front Physiol; 2023; 14():1094249. PubMed ID: 36711019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaching into the toolbox: Stem cell models to study neuropsychiatric disorders.
    Whiteley JT; Fernandes S; Sharma A; Mendes APD; Racha V; Benassi SK; Marchetto MC
    Stem Cell Reports; 2022 Feb; 17(2):187-210. PubMed ID: 35063127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Editing the genome of hiPSC with CRISPR/Cas9: disease models.
    Bassett AR
    Mamm Genome; 2017 Aug; 28(7-8):348-364. PubMed ID: 28303292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics.
    Matos MR; Ho SM; Schrode N; Brennand KJ
    Mol Cell Neurosci; 2020 Sep; 107():103532. PubMed ID: 32712198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling pancreatic pathophysiology using genome editing of adult stem cell-derived and induced pluripotent stem cell (iPSC)-derived organoids.
    Hirshorn ST; Steele N; Zavros Y
    Am J Physiol Gastrointest Liver Physiol; 2021 Jun; 320(6):G1142-G1150. PubMed ID: 33759566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating CRISPR Engineering and hiPSC-Derived 2D Disease Modeling Systems.
    Rehbach K; Fernando MB; Brennand KJ
    J Neurosci; 2020 Feb; 40(6):1176-1185. PubMed ID: 32024766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
    Zhang Y; Sastre D; Wang F
    Curr Stem Cell Res Ther; 2018; 13(4):243-251. PubMed ID: 29446747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells.
    Kim EJ; Kang KH; Ju JH
    Korean J Intern Med; 2017 Jan; 32(1):42-61. PubMed ID: 28049282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids.
    Hendriks D; Clevers H; Artegiani B
    Cell Stem Cell; 2020 Nov; 27(5):705-731. PubMed ID: 33157047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids.
    Costamagna G; Comi GP; Corti S
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling neuropsychiatric disorders using human induced pluripotent stem cells.
    Wang M; Zhang L; Gage FH
    Protein Cell; 2020 Jan; 11(1):45-59. PubMed ID: 31134525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.