These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35459785)

  • 1. Protein-bound sialic acid in saliva contributes directly to salivary anti-influenza virus activity.
    Kobayashi K; Shono C; Mori T; Kitazawa H; Ota N; Kurebayashi Y; Suzuki T
    Sci Rep; 2022 Apr; 12(1):6636. PubMed ID: 35459785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of proteins with anti-influenza virus effects in parotid and submandibular-sublingual saliva in humans.
    Yamamoto K; Yamamoto S
    BMC Oral Health; 2022 Dec; 22(1):639. PubMed ID: 36566172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salivary agglutinin and lung scavenger receptor cysteine-rich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant protein D that vary according to donor source and sialylation.
    Hartshorn KL; Ligtenberg A; White MR; Van Eijk M; Hartshorn M; Pemberton L; Holmskov U; Crouch E
    Biochem J; 2006 Jan; 393(Pt 2):545-53. PubMed ID: 16190864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple components contribute to ability of saliva to inhibit influenza viruses.
    White MR; Helmerhorst EJ; Ligtenberg A; Karpel M; Tecle T; Siqueira WL; Oppenheim FG; Hartshorn KL
    Oral Microbiol Immunol; 2009 Feb; 24(1):18-24. PubMed ID: 19121065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo mechanism of immunomodulatory and antiviral activity of Edible Bird's Nest (EBN) against influenza A virus (IAV) infection.
    Haghani A; Mehrbod P; Safi N; Aminuddin NA; Bahadoran A; Omar AR; Ideris A
    J Ethnopharmacol; 2016 Jun; 185():327-40. PubMed ID: 26976767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.
    Limsuwat N; Suptawiwat O; Boonarkart C; Puthavathana P; Wiriyarat W; Auewarakul P
    Arch Virol; 2016 Mar; 161(3):649-56. PubMed ID: 26671828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Influenza A Virus by Human Infant Saliva.
    Gilbertson B; Edenborough K; McVernon J; Brown LE
    Viruses; 2019 Aug; 11(8):. PubMed ID: 31434247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lung and salivary scavenger receptor glycoprotein-340 contribute to the host defense against influenza A viruses.
    Hartshorn KL; White MR; Mogues T; Ligtenberg T; Crouch E; Holmskov U
    Am J Physiol Lung Cell Mol Physiol; 2003 Nov; 285(5):L1066-76. PubMed ID: 12871854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PGRMC1 Exerts Its Function of Anti-Influenza Virus in the Central Nervous System.
    Huang K; Zhang Y; Gong W; Yang Y; Jiang L; Zhao L; Yang Y; Wei Y; Li C; He X; Sun X; Zou Z; Jin M
    Microbiol Spectr; 2021 Oct; 9(2):e0073421. PubMed ID: 34585989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serum amyloid P is a sialylated glycoprotein inhibitor of influenza A viruses.
    Job ER; Bottazzi B; Gilbertson B; Edenborough KM; Brown LE; Mantovani A; Brooks AG; Reading PC
    PLoS One; 2013; 8(3):e59623. PubMed ID: 23544079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo effect of quantified flavonoids-enriched extract of Scutellaria baicalensis root on acute lung injury induced by influenza A virus.
    Zhi HJ; Zhu HY; Zhang YY; Lu Y; Li H; Chen DF
    Phytomedicine; 2019 Apr; 57():105-116. PubMed ID: 30668313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chrysin Ameliorates Influenza Virus Infection in the Upper Airways by Repressing Virus-Induced Cell Cycle Arrest and Mitochondria-Dependent Apoptosis.
    Liu Y; Song X; Li C; Hu H; Li W; Wang L; Hu J; Liao C; Liang H; He Z; Ye L
    Front Immunol; 2022; 13():872958. PubMed ID: 35432374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human H-ficolin inhibits replication of seasonal and pandemic influenza A viruses.
    Verma A; White M; Vathipadiekal V; Tripathi S; Mbianda J; Ieong M; Qi L; Taubenberger JK; Takahashi K; Jensenius JC; Thiel S; Hartshorn KL
    J Immunol; 2012 Sep; 189(5):2478-87. PubMed ID: 22851708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Inhibition of Avian and Seasonal Influenza A Viruses by a Virus-Specific Dicer-Substrate Small Interfering RNA Swarm in Human Monocyte-Derived Macrophages and Dendritic Cells.
    Jiang M; Österlund P; Westenius V; Guo D; Poranen MM; Bamford DH; Julkunen I
    J Virol; 2019 Feb; 93(4):. PubMed ID: 30463970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Susceptibility of human and avian influenza viruses to human and chicken saliva.
    Limsuwat N; Suptawiwat O; Boonarkart C; Puthavathana P; Auewarakul P; Wiriyarat W
    J Med Virol; 2014 May; 86(5):872-8. PubMed ID: 24214532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations during the Adaptation of H9N2 Avian Influenza Virus to the Respiratory Epithelium of Pigs Enhance Sialic Acid Binding Activity and Virulence in Mice.
    Yang W; Punyadarsaniya D; Lambertz RLO; Lee DCC; Liang CH; Höper D; Leist SR; Hernández-Cáceres A; Stech J; Beer M; Wu CY; Wong CH; Schughart K; Meng F; Herrler G
    J Virol; 2017 Apr; 91(8):. PubMed ID: 28148793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian influenza virus infection risk in humans with chronic diseases.
    Zhong Y; Qin Y; Yu H; Yu J; Wu H; Chen L; Zhang P; Wang X; Jia Z; Guo Y; Zhang H; Shan J; Wang Y; Xie H; Li X; Li Z
    Sci Rep; 2015 Mar; 5():8971. PubMed ID: 25754427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Functional analysis of glyco-molecules that bind with influenza virus].
    Takahashi T
    Uirusu; 2016; 66(1):101-116. PubMed ID: 28484173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pregnancy-associated decrease of Siaα2-3Gal-linked glycans on salivary glycoproteins affects their binding ability to avian influenza virus.
    Ding L; Fu X; Guo W; Cheng Y; Chen X; Zhang K; Zhu G; Yang F; Yu H; Chen Z; Wang X; Wang X; Wang X; Li Z
    Int J Biol Macromol; 2021 Aug; 184():339-348. PubMed ID: 34097968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the role of MRGPRC11 and capsaicin-sensitive afferent nerves in the anti-influenza effects exerted by SLIGRL-amide in murine airways.
    Chang AY; Mann TS; McFawn PK; Han L; Dong X; Henry PJ
    Respir Res; 2016 May; 17(1):62. PubMed ID: 27215903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.