BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 35459968)

  • 1. Bioanalytical approaches for the detection, characterization, and risk assessment of micro/nanoplastics in agriculture and food systems.
    Yu C; Takhistov P; Alocilja E; de Corcuera JR; Frey MW; Gomes CL; Mao YJ; McLamore ES; Lin M; Tsyusko OV; Tzeng TJ; Yoon JY; Zhou A
    Anal Bioanal Chem; 2022 Jul; 414(16):4591-4612. PubMed ID: 35459968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction and identification methods of microplastics and nanoplastics in agricultural soil: A review.
    Junhao C; Xining Z; Xiaodong G; Li Z; Qi H; Siddique KHM
    J Environ Manage; 2021 Sep; 294():112997. PubMed ID: 34111599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives.
    Ivleva NP
    Chem Rev; 2021 Oct; 121(19):11886-11936. PubMed ID: 34436873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection methods of micro and nanoplastics.
    Hassoun A; Pasti L; Chenet T; Rusanova P; Smaoui S; Aït-Kaddour A; Bono G
    Adv Food Nutr Res; 2023; 103():175-227. PubMed ID: 36863835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF).
    Sullivan GL; Gallardo JD; Jones EW; Hollliman PJ; Watson TM; Sarp S
    Chemosphere; 2020 Jun; 249():126179. PubMed ID: 32078854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human health concerns regarding microplastics in the aquatic environment - From marine to food systems.
    Yuan Z; Nag R; Cummins E
    Sci Total Environ; 2022 Jun; 823():153730. PubMed ID: 35143789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectro-Microscopic Techniques for Studying Nanoplastics in the Environment and in Organisms.
    Mandemaker LDB; Meirer F
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202210494. PubMed ID: 36278811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of an analytical pyrolysis method for detection of airborne polystyrene nanoparticles.
    Hasager F; Björgvinsdóttir ÞN; Vinther SF; Christofili A; Kjærgaard ER; Petters SS; Bilde M; Glasius M
    J Chromatogr A; 2024 Feb; 1717():464622. PubMed ID: 38309189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of microplastics and nanoplastics from urban waters: Separation and degradation.
    Chen Z; Liu X; Wei W; Chen H; Ni BJ
    Water Res; 2022 Aug; 221():118820. PubMed ID: 35841788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential Isolation of Microplastics and Nanoplastics in Environmental Waters by Membrane Filtration, Followed by Cloud-Point Extraction.
    Li QC; Lai YJ; Yu SJ; Li P; Zhou XX; Dong LJ; Liu X; Yao ZW; Liu JF
    Anal Chem; 2021 Mar; 93(10):4559-4566. PubMed ID: 33646744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and efficient method for assessing nanoplastics by an electromagnetic heating pyrolysis mass spectrometry.
    Zhang X; Shi K; Liu Y; Chen Y; Yu K; Wang Y; Zhang H; Jiang J
    J Hazard Mater; 2021 Oct; 419():126506. PubMed ID: 34218188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current status of microplastics and nanoplastics removal methods: Summary, comparison and prospect.
    Liu Q; Chen Y; Chen Z; Yang F; Xie Y; Yao W
    Sci Total Environ; 2022 Dec; 851(Pt 1):157991. PubMed ID: 35964738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Methods for the identification and quantification of microplastics in foods (a review)].
    Gmoshinski IV; Shipelin VA; Kolobanov AI; Sokolov IE; Maisaya KZ; Khotimchenko SA
    Vopr Pitan; 2023; 92(5):87-102. PubMed ID: 38198409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microplastics and nanoplastics: Recent literature studies and patents on their removal from aqueous environment.
    Hanif MA; Ibrahim N; Dahalan FA; Md Ali UF; Hasan M; Jalil AA
    Sci Total Environ; 2022 Mar; 810():152115. PubMed ID: 34896138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters?
    Elert AM; Becker R; Duemichen E; Eisentraut P; Falkenhagen J; Sturm H; Braun U
    Environ Pollut; 2017 Dec; 231(Pt 2):1256-1264. PubMed ID: 28941715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current development and future challenges in microplastic detection techniques: A bibliometrics-based analysis and review.
    Jin M; Liu J; Yu J; Zhou Q; Wu W; Fu L; Yin C; Fernandez C; Karimi-Maleh H
    Sci Prog; 2022; 105(4):368504221132151. PubMed ID: 36263507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptor-based detection of microplastics and nanoplastics: Current and future.
    Tang Y; Hardy TJ; Yoon JY
    Biosens Bioelectron; 2023 Aug; 234():115361. PubMed ID: 37148803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of methods for measuring microplastics in aquatic environments.
    Mai L; Bao LJ; Shi L; Wong CS; Zeng EY
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11319-11332. PubMed ID: 29536421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Structural Morphology of Commodity Polymers in Microplastics and Nanoplastics Formation: Fragmentation, Effects and Associated Toxicity in the Aquatic Environment.
    Johannessen C; Shetranjiwalla S
    Rev Environ Contam Toxicol; 2021; 259():123-169. PubMed ID: 34652560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by-products.
    Castelvetro V; Corti A; Biale G; Ceccarini A; Degano I; La Nasa J; Lomonaco T; Manariti A; Manco E; Modugno F; Vinciguerra V
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46764-46780. PubMed ID: 33502712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.