These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35460048)

  • 21. Differences in muscle activation patterns during step recovery in elderly women with and without a history of falls.
    Ochi A; Yokoyama S; Abe T; Yamada K; Tateuchi H; Ichihashi N
    Aging Clin Exp Res; 2014 Apr; 26(2):213-20. PubMed ID: 24104446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of maximum isometric muscle force scaling on estimated muscle forces from musculoskeletal models of children with cerebral palsy.
    Kainz H; Goudriaan M; Falisse A; Huenaerts C; Desloovere K; De Groote F; Jonkers I
    Gait Posture; 2018 Sep; 65():213-220. PubMed ID: 30558934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location.
    Martelli S; Valente G; Viceconti M; Taddei F
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1555-63. PubMed ID: 24963785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Policy Design for an Ankle-Foot Orthosis Using Simulated Physical Human-Robot Interaction via Deep Reinforcement Learning.
    Han JI; Lee JH; Choi HS; Kim JH; Choi J
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2186-2197. PubMed ID: 35925859
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy.
    Gomes AA; Ackermann M; Ferreira JP; Orselli MIV; Sacco ICN
    J Neuroeng Rehabil; 2017 Nov; 14(1):111. PubMed ID: 29121964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of musculoskeletal loadings in lower limbs during stilts walking in occupational activity.
    Wu JZ; Chiou SS; Pan CS
    Ann Biomed Eng; 2009 Jun; 37(6):1177-89. PubMed ID: 19296222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.
    Hussain S; Jamwal PK; Ghayesh MH
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of asymmetrical gait induced by unilateral knee brace on the knee flexor and extensor muscles.
    Yap YT; Gouwanda D; Gopalai AA; Chong YZ
    Med Biol Eng Comput; 2021 Mar; 59(3):711-720. PubMed ID: 33625670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive neuromechanical simulations indicate why walking performance declines with ageing.
    Song S; Geyer H
    J Physiol; 2018 Apr; 596(7):1199-1210. PubMed ID: 29344967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the correlation between muscle forces obtained from OpenSim and muscle activities obtained from electromyography in the elderly.
    Karimi MT; Hemmati F; Mardani MA; Sharifmoradi K; Hosseini SI; Fadayevatan R; Esrafilian A
    Phys Eng Sci Med; 2021 Mar; 44(1):243-251. PubMed ID: 33559039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An EMG-based, muscle driven forward simulation of single support phase of gait.
    Jonkers I; Spaepen A; Papaioannou G; Stewart C
    J Biomech; 2002 May; 35(5):609-19. PubMed ID: 11955500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the moving fluoroscope on gait patterns.
    Hitz M; Schütz P; Angst M; Taylor WR; List R
    PLoS One; 2018; 13(7):e0200608. PubMed ID: 30005086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments.
    Kerrigan DC; Todd MK; Della Croce U; Lipsitz LA; Collins JJ
    Arch Phys Med Rehabil; 1998 Mar; 79(3):317-22. PubMed ID: 9523785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generating Human Arm Kinematics Using Reinforcement Learning to Train Active Muscle Behavior in Automotive Research.
    Mukherjee S; Perez-Rapela D; Forman JL; Panzer MB
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36128755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements.
    Yoshioka S; Nagano A; Himeno R; Fukashiro S
    Biomed Eng Online; 2007 Jul; 6():26. PubMed ID: 17608922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Capacity of Generic Musculoskeletal Simulations to Predict Knee Joint Loading Using the CAMS-Knee Datasets.
    Imani Nejad Z; Khalili K; Hosseini Nasab SH; Schütz P; Damm P; Trepczynski A; Taylor WR; Smith CR
    Ann Biomed Eng; 2020 Apr; 48(4):1430-1440. PubMed ID: 32002734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnitude and variability of gait characteristics when walking on an irregular surface at different speeds.
    Blair S; Lake MJ; Ding R; Sterzing T
    Hum Mov Sci; 2018 Jun; 59():112-120. PubMed ID: 29653340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of the effect of lower extremity strength on impact severity during a backward fall.
    Sandler R; Robinovitch S
    J Biomech Eng; 2001 Dec; 123(6):590-8. PubMed ID: 11783730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.
    Walter JP; Pandy MG
    Med Eng Phys; 2017 Oct; 48():196-205. PubMed ID: 28712529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.
    Fox AS; Carty CP; Modenese L; Barber LA; Lichtwark GA
    Gait Posture; 2018 Mar; 61():169-175. PubMed ID: 29353741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.