These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35460775)

  • 1. Response of plant functional traits to nitrogen enrichment under climate change: A meta-analysis.
    Guo X; Liu H; Ngosong C; Li B; Wang Q; Zhou W; Nie M
    Sci Total Environ; 2022 Aug; 834():155379. PubMed ID: 35460775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of soil carbon under elevated CO
    Dietzen CA; Larsen KS; Ambus PL; Michelsen A; Arndal MF; Beier C; Reinsch S; Schmidt IK
    Glob Chang Biol; 2019 Sep; 25(9):2970-2977. PubMed ID: 31095816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra.
    Suseela V; Tharayil N; Xing B; Dukes JS
    Glob Chang Biol; 2015 Nov; 21(11):4177-95. PubMed ID: 26179236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO
    Maxwell TL; Canarini A; Bogdanovic I; Böckle T; Martin V; Noll L; Prommer J; Séneca J; Simon E; Piepho HP; Herndl M; Pötsch EM; Kaiser C; Richter A; Bahn M; Wanek W
    Glob Chang Biol; 2022 Apr; 28(7):2425-2441. PubMed ID: 34908205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warming and elevated CO
    Meeran K; Ingrisch J; Reinthaler D; Canarini A; Müller L; Pötsch EM; Richter A; Wanek W; Bahn M
    Glob Chang Biol; 2021 Jul; 27(14):3230-3243. PubMed ID: 33811716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative effects of climate change on upland grassland productivity and carbon fluxes are not attenuated by nitrogen status.
    Eze S; Palmer SM; Chapman PJ
    Sci Total Environ; 2018 Oct; 637-638():398-407. PubMed ID: 29753228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of elevated CO₂, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland.
    Xu Z; Shimizu H; Ito S; Yagasaki Y; Zou C; Zhou G; Zheng Y
    Planta; 2014 Feb; 239(2):421-35. PubMed ID: 24463932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effects of warming and drought on plant biomass depend on plant woodiness and community type: a meta-analysis.
    Wilschut RA; De Long JR; Geisen S; Hannula SE; Quist CW; Snoek B; Steinauer K; Wubs ERJ; Yang Q; Thakur MP
    Proc Biol Sci; 2022 Oct; 289(1984):20221178. PubMed ID: 36196543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol.
    Jin J; Lauricella D; Armstrong R; Sale P; Tang C
    Ann Bot; 2015 Nov; 116(6):975-85. PubMed ID: 25429008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phyllosphere Community Assembly and Response to Drought Stress on Common Tropical and Temperate Forage Grasses.
    Bechtold EK; Ryan S; Moughan SE; Ranjan R; Nüsslein K
    Appl Environ Microbiol; 2021 Aug; 87(17):e0089521. PubMed ID: 34161142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of drought and nitrogen enrichment on leaf nutrient resorption and root nutrient allocation in four Tibetan plant species.
    Zhao Q; Guo J; Shu M; Wang P; Hu S
    Sci Total Environ; 2020 Jun; 723():138106. PubMed ID: 32222509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants.
    Albert KR; Mikkelsen TN; Michelsen A; Ro-Poulsen H; van der Linden L
    J Plant Physiol; 2011 Sep; 168(13):1550-61. PubMed ID: 21511363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination of leaf functional traits under climatic warming in an arid ecosystem.
    Yu H; Chen Y; Zhou G; Xu Z
    BMC Plant Biol; 2022 Sep; 22(1):439. PubMed ID: 36100908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular Mycorrhization Enhances Nitrogen, Phosphorus and Potassium Accumulation in
    Shi S; Luo X; Dong X; Qiu Y; Xu C; He X
    J Fungi (Basel); 2021 May; 7(5):. PubMed ID: 34063150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate legacies determine grassland responses to future rainfall regimes.
    Broderick CM; Wilkins K; Smith MD; Blair JM
    Glob Chang Biol; 2022 Apr; 28(8):2639-2656. PubMed ID: 35015919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants].
    Hong JT; Wu JB; Wang XD
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2658-65. PubMed ID: 24417127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem.
    Albert KR; Ro-Poulsen H; Mikkelsen TN; Michelsen A; van der Linden L; Beier C
    J Exp Bot; 2011 Aug; 62(12):4253-66. PubMed ID: 21586430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change influences mycorrhizal fungal-plant interactions, but conclusions are limited by geographical study bias.
    Bennett AE; Classen AT
    Ecology; 2020 Apr; 101(4):e02978. PubMed ID: 31953955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated CO
    Yu H; Deng Y; He Z; Van Nostrand JD; Wang S; Jin D; Wang A; Wu L; Wang D; Tai X; Zhou J
    Front Microbiol; 2018; 9():1790. PubMed ID: 30154760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of drought and N-fertilization on N cycling in two grassland soils.
    Hartmann AA; Barnard RL; Marhan S; Niklaus PA
    Oecologia; 2013 Mar; 171(3):705-17. PubMed ID: 23297047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.