BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35460790)

  • 1. Degradation pathways and kinetics of chloroacetonitriles by UV/persulfate in the presence of bromide.
    Li M; Shi Y; Sun S; Qian Y; An D
    Sci Total Environ; 2022 Aug; 834():155373. PubMed ID: 35460790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of bisphenol A by UV/persulfate process in the presence of bromide: Role of reactive bromine.
    Cai A; Deng J; Ling X; Ye C; Sun H; Deng Y; Zhou S; Li X
    Water Res; 2022 May; 215():118288. PubMed ID: 35303562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and mechanisms of degradation of chloroacetonitriles by the UV/H2O2 process.
    Ling L; Sun J; Fang J; Shang C
    Water Res; 2016 Aug; 99():209-215. PubMed ID: 27161887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Bromine Radicals and Hydroxyl Radicals in the Degradation of Micropollutants by the UV/Bromine Process.
    Guo K; Zheng S; Zhang X; Zhao L; Ji S; Chen C; Wu Z; Wang D; Fang J
    Environ Sci Technol; 2020 May; 54(10):6415-6426. PubMed ID: 32320225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degrading surface-water-based natural organic matter and mitigating haloacetonitrile formation during chlorination: Comparison of UV/persulfate and UV/hydrogen peroxide pre-treatments.
    Murata Y; Sakai H; Kosaka K
    Chemosphere; 2024 Apr; 354():141717. PubMed ID: 38490617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of bromide in thermo activated persulfate oxidation processes.
    Lu J; Wu J; Ji Y; Kong D
    Water Res; 2015 Jul; 78():1-8. PubMed ID: 25898247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of the formation of brominated disinfection byproducts in UV/persulfate and UV/H
    Wang L; Ji Y; Lu J; Kong D; Yin X; Zhou Q
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23219-23225. PubMed ID: 28831656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.
    Fang J; Zhao Q; Fan C; Shang C; Fu Y; Zhang X
    Chemosphere; 2017 Sep; 183():582-588. PubMed ID: 28570902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodegradation of haloacetonitriles in water by vacuum ultraviolet irradiation: Mechanisms and intermediate formation.
    Kiattisaksiri P; Khan E; Punyapalakul P; Ratpukdi T
    Water Res; 2016 Jul; 98():160-7. PubMed ID: 27101477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Assessment of Reactive Bromine Species in Advanced Oxidation Processes: Differential Roles in Micropollutant Abatement in Bromide-Containing Water.
    Guo K; Zhang Y; Wu S; Qin W; Wang Y; Hua Z; Chen C; Fang J
    Environ Sci Technol; 2023 Dec; 57(48):20339-20348. PubMed ID: 37946521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments.
    Wenhai C; Tengfei C; Erdeng D; Deng Y; Yingqing G; Naiyun G
    Ecotoxicol Environ Saf; 2016 Feb; 124():147-154. PubMed ID: 26513530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the effects of bromide at fresh water levels on the radical chemistry in the UV/peroxydisulfate process.
    Wang A; Hua Z; Wu Z; Chen C; Hou S; Huang B; Wang Y; Wang D; Li X; Li C; Fang J
    Water Res; 2021 Jun; 197():117042. PubMed ID: 33784605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV
    Bi W; Zhang X; Wang L; Ding Y; Zhu S; Ma X; Li Q; Li X; Deng J
    Sci Total Environ; 2023 Oct; 894():164847. PubMed ID: 37331403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Aspects of the Formation of Adsorbable Organic Bromine during Chlorination of Bromide-containing Synthetic Waters.
    Langsa M; Heitz A; Joll CA; von Gunten U; Allard S
    Environ Sci Technol; 2017 May; 51(9):5146-5155. PubMed ID: 28358483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid degradation of dichloroacetonitrile by hydrated electron (e
    Wu Z; Shang C; Wang D; Zheng S; Wang Y; Fang J
    Chemosphere; 2020 Oct; 256():126994. PubMed ID: 32445996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced oxidation mechanism of UV photolysis of electrochemically generated free bromine.
    Kishimoto N; Hara K
    Environ Technol; 2022 May; 43(12):1761-1769. PubMed ID: 33180673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bromate formation from bromide oxidation by the UV/persulfate process.
    Fang JY; Shang C
    Environ Sci Technol; 2012 Aug; 46(16):8976-83. PubMed ID: 22831804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of BrCl, Br₂, BrOCl, Br₂O, and HOBr toward dimethenamid in solutions of bromide + aqueous free chlorine.
    Sivey JD; Arey JS; Tentscher PR; Roberts AL
    Environ Sci Technol; 2013 Feb; 47(3):1330-8. PubMed ID: 23323704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of bromate by zero valent iron (ZVI) enhances formation of brominated disinfection by-products during chlorination.
    Wu Z; Tang Y; Yuan X; Qiang Z
    Chemosphere; 2021 Apr; 268():129340. PubMed ID: 33360939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.