BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35460817)

  • 1. An informatics approach to distinguish RNA modifications in nanopore direct RNA sequencing.
    Ramasamy S; Mishra S; Sharma S; Parimalam SS; Vaijayanthi T; Fujita Y; Kovi B; Sugiyama H; Pandian GN
    Genomics; 2022 May; 114(3):110372. PubMed ID: 35460817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing.
    Begik O; Lucas MC; Pryszcz LP; Ramirez JM; Medina R; Milenkovic I; Cruciani S; Liu H; Vieira HGS; Sas-Chen A; Mattick JS; Schwartz S; Novoa EM
    Nat Biotechnol; 2021 Oct; 39(10):1278-1291. PubMed ID: 33986546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penguin: A tool for predicting pseudouridine sites in direct RNA nanopore sequencing data.
    Hassan D; Acevedo D; Daulatabad SV; Mir Q; Janga SC
    Methods; 2022 Jul; 203():478-487. PubMed ID: 35182749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bisulfite and Nanopore Sequencing for Pseudouridine in RNA.
    Burrows CJ; Fleming AM
    Acc Chem Res; 2023 Oct; 56(19):2740-2751. PubMed ID: 37700703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Modification Detection Using Nanopore Direct RNA Sequencing and nanoDoc2.
    Ueda H; Dasgupta B; Yu BY
    Methods Mol Biol; 2023; 2632():299-319. PubMed ID: 36781737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Nanocompore to Identify RNA Modifications from Direct RNA Nanopore Sequencing Data.
    Mulroney L; Birney E; Leonardi T; Nicassio F
    Curr Protoc; 2023 Feb; 3(2):e683. PubMed ID: 36840709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the epitranscriptome by native RNA sequencing.
    Begik O; Mattick JS; Novoa EM
    RNA; 2022 Nov; 28(11):1430-1439. PubMed ID: 36104106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NanoMUD: Profiling of pseudouridine and N1-methylpseudouridine using Oxford Nanopore direct RNA sequencing.
    Zhang Y; Yan H; Wei Z; Hong H; Huang D; Liu G; Qin Q; Rong R; Gao P; Meng J; Ying B
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132433. PubMed ID: 38759861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Probe-Based Nanopore Sequencing to Selectively Assess the RNA Modifications.
    Ramasamy S; Sahayasheela VJ; Sharma S; Yu Z; Hidaka T; Cai L; Thangavel V; Sugiyama H; Pandian GN
    ACS Chem Biol; 2022 Oct; 17(10):2704-2709. PubMed ID: 36190780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA modifications detection by comparative Nanopore direct RNA sequencing.
    Leger A; Amaral PP; Pandolfini L; Capitanchik C; Capraro F; Miano V; Migliori V; Toolan-Kerr P; Sideri T; Enright AJ; Tzelepis K; van Werven FJ; Luscombe NM; Barbieri I; Ule J; Fitzgerald T; Birney E; Leonardi T; Kouzarides T
    Nat Commun; 2021 Dec; 12(1):7198. PubMed ID: 34893601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding the epitranscriptional landscape from native RNA sequences.
    Jenjaroenpun P; Wongsurawat T; Wadley TD; Wassenaar TM; Liu J; Dai Q; Wanchai V; Akel NS; Jamshidi-Parsian A; Franco AT; Boysen G; Jennings ML; Ussery DW; He C; Nookaew I
    Nucleic Acids Res; 2021 Jan; 49(2):e7. PubMed ID: 32710622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing viral epitranscriptomes using nanopore direct RNA sequencing.
    Hong A; Kim D; Kim VN; Chang H
    J Microbiol; 2022 Sep; 60(9):867-876. PubMed ID: 36001233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequoia: A Framework for Visual Analysis of RNA Modifications from Direct RNA Sequencing Data.
    Koonchanok R; Daulatabad SV; Reda K; Janga SC
    Methods Mol Biol; 2023; 2624():127-138. PubMed ID: 36723813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudouridines have context-dependent mutation and stop rates in high-throughput sequencing.
    Zhou KI; Clark WC; Pan DW; Eckwahl MJ; Dai Q; Pan T
    RNA Biol; 2018; 15(7):892-900. PubMed ID: 29683381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive and quantitative probing of pseudouridine modification in mRNA and long noncoding RNA.
    Zhang W; Eckwahl MJ; Zhou KI; Pan T
    RNA; 2019 Sep; 25(9):1218-1225. PubMed ID: 31227565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mito-Ψ-Seq: A High-Throughput Method for Systematic Mapping of Pseudouridine Within Mitochondrial RNA.
    Sas-Chen A; Nir R; Schwartz S
    Methods Mol Biol; 2021; 2192():103-115. PubMed ID: 33230769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of Human Ribosomal RNA for Nanopore Sequencing of Canonical and Modified Nucleotides.
    Jain M; Olsen HE; Akeson M; Abu-Shumays R
    Methods Mol Biol; 2021; 2298():53-74. PubMed ID: 34085238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore.
    Pratanwanich PN; Yao F; Chen Y; Koh CWQ; Wan YK; Hendra C; Poon P; Goh YT; Yap PML; Chooi JY; Chng WJ; Ng SB; Thiery A; Goh WSS; Göke J
    Nat Biotechnol; 2021 Nov; 39(11):1394-1402. PubMed ID: 34282325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly parallel direct RNA sequencing on an array of nanopores.
    Garalde DR; Snell EA; Jachimowicz D; Sipos B; Lloyd JH; Bruce M; Pantic N; Admassu T; James P; Warland A; Jordan M; Ciccone J; Serra S; Keenan J; Martin S; McNeill L; Wallace EJ; Jayasinghe L; Wright C; Blasco J; Young S; Brocklebank D; Juul S; Clarke J; Heron AJ; Turner DJ
    Nat Methods; 2018 Mar; 15(3):201-206. PubMed ID: 29334379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of RNA Modifications by Direct Nanopore Sequencing and JACUSA2.
    Lemsara A; Dieterich C; Naarmann-de Vries IS
    Methods Mol Biol; 2023; 2624():241-260. PubMed ID: 36723820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.