BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35460996)

  • 1. Modeling plant uptake of organic contaminants by root vegetables: The role of diffusion, xylem, and phloem uptake routes.
    Li Z
    J Hazard Mater; 2022 Jul; 434():128911. PubMed ID: 35460996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalizing routes of plant exposure to pesticides by plant uptake models to assess pesticide application efficiency.
    Zhang X; Li Z
    Ecotoxicol Environ Saf; 2023 Jun; 262():115145. PubMed ID: 37327522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving pesticide uptake modeling and management in potatoes: A simple and approximate phloem-adjusted model.
    Li Z
    J Environ Manage; 2021 Oct; 296():113180. PubMed ID: 34225049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique.
    Hsu FC; Marxmiller RL; Yang AY
    Plant Physiol; 1990 Aug; 93(4):1573-8. PubMed ID: 16667658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake pathways of chlorobenzenes in plants and their correlation with N-octanol/water partition coefficients.
    Scheunert I; Topp E; Attar A; Korte F
    Ecotoxicol Environ Saf; 1994 Feb; 27(1):90-104. PubMed ID: 7525208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling pesticide residue uptake by leguminous plants: a geocarpic fruit model for peanuts.
    Li Z
    Pest Manag Sci; 2023 Jan; 79(1):152-162. PubMed ID: 36107631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis.
    Peuke AD
    J Exp Bot; 2010 Mar; 61(3):635-55. PubMed ID: 20032109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method.
    Garvin N; Doucette WJ; White JC
    Chemosphere; 2015 Jul; 130():98-102. PubMed ID: 25537866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of lipophilic organic compounds to wood and implications for their environmental fate.
    Trapp S; Miglioranza KS; Mosbaek H
    Environ Sci Technol; 2001 Apr; 35(8):1561-6. PubMed ID: 11329702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical hydrophobicity and uptake by plant roots.
    Dettenmaier EM; Doucette WJ; Bugbee B
    Environ Sci Technol; 2009 Jan; 43(2):324-9. PubMed ID: 19238959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Reduced Model for Bioconcentration and Biotransformation of Neutral Organic Compounds in Midge.
    Kuo DTF; Chen CC
    Environ Toxicol Chem; 2021 Jan; 40(1):57-71. PubMed ID: 33044762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved plant bioconcentration modeling of pesticides: The role of periderm dynamics.
    Xiao S; Li Z; Fantke P
    Pest Manag Sci; 2021 Nov; 77(11):5096-5108. PubMed ID: 34236751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining plant uptake and translocation of emerging contaminants using machine learning: Implications to food security.
    Bagheri M; Al-Jabery K; Wunsch D; Burken JG
    Sci Total Environ; 2020 Jan; 698():133999. PubMed ID: 31499345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation uptake model of heavy metals (Pb, Cd and Zn) in soil using
    Ibrahim N; El Afandi G
    Heliyon; 2020 Jul; 6(7):e04445. PubMed ID: 32695916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical factors affecting uptake and translocation of six pesticides in soil by maize (Zea mays L.).
    Wang F; Li X; Yu S; He S; Cao D; Yao S; Fang H; Yu Y
    J Hazard Mater; 2021 Mar; 405():124269. PubMed ID: 33144009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similarities and differences in the balances between leaf, xylem and phloem structures in Fraxinus ornus along an environmental gradient.
    Kiorapostolou N; Petit G
    Tree Physiol; 2019 Feb; 39(2):234-242. PubMed ID: 30189046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved prediction of the bioconcentration factors of organic contaminants from soils into plant/crop roots by related physicochemical parameters.
    Li Y; Chiou CT; Li H; Schnoor JL
    Environ Int; 2019 May; 126():46-53. PubMed ID: 30776749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylem-phloem hydraulic coupling explains multiple osmoregulatory responses to salt stress.
    Perri S; Katul GG; Molini A
    New Phytol; 2019 Oct; 224(2):644-662. PubMed ID: 31349369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption equilibrium of emerging and traditional organic contaminants in leafy rape, Chinese mustard, lettuce and Chinese cabbage.
    Yang CY; Chang ML; Wu SC; Shih YH
    Chemosphere; 2016 Jul; 154():552-558. PubMed ID: 27085315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod.
    Chen CC; Kuo DTF
    Environ Toxicol Chem; 2018 May; 37(5):1378-1386. PubMed ID: 29315781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.