These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35461020)

  • 1. Optical quantification of oil emulsions in multi-band coarse-resolution imagery using a lab-derived HSV model.
    Jiao J; Lu Y; Liu Y
    Mar Pollut Bull; 2022 May; 178():113640. PubMed ID: 35461020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact.
    Khanna S; Santos MJ; Ustin SL; Shapiro K; Haverkamp PJ; Lay M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical discrimination of emulsified oil in optically complex estuarine waters.
    Sun S; Chen Y; Chen X; Ai B; Zhao J
    Mar Pollut Bull; 2022 Nov; 184():114214. PubMed ID: 36219974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods.
    Ozigis MS; Kaduk JD; Jarvis CH; da Conceição Bispo P; Balzter H
    Environ Pollut; 2020 Jan; 256():113360. PubMed ID: 31672372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of oil spills using Sentinel 1 C-band SAR and Landsat 8 multispectral sensors.
    Arslan N
    Environ Monit Assess; 2018 Oct; 190(11):637. PubMed ID: 30338396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and Monitoring of Oil Spills Using Moderate/High-Resolution Remote Sensing Images.
    Li Y; Cui C; Liu Z; Liu B; Xu J; Zhu X; Hou Y
    Arch Environ Contam Toxicol; 2017 Jul; 73(1):154-169. PubMed ID: 28695250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations.
    Sun S; Hu C; Tunnell JW
    Mar Pollut Bull; 2015 Dec; 101(2):632-41. PubMed ID: 26507512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach.
    Trujillo-Acatitla R; Tuxpan-Vargas J; Ovando-Vázquez C
    Mar Pollut Bull; 2022 Nov; 184():114132. PubMed ID: 36174253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing potential of the Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) for water quality monitoring across the coastal United States.
    Schaeffer BA; Whitman P; Vandermeulen R; Hu C; Mannino A; Salisbury J; Efremova B; Conmy R; Coffer M; Salls W; Ferriby H; Reynolds N
    Mar Pollut Bull; 2023 Nov; 196():115558. PubMed ID: 37757532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern recognition analysis of marine oil spills in airborne passive infrared multispectral remote sensing images.
    Chen Z; Small GW
    Analyst; 2022 Nov; 147(22):5018-5027. PubMed ID: 36156609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Oil Spill Using SAR Imagery Based on AlexNet Model.
    Wang X; Liu J; Zhang S; Deng Q; Wang Z; Li Y; Fan J
    Comput Intell Neurosci; 2021; 2021():4812979. PubMed ID: 34326866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil pollution in the Eastern Arabian Sea from invisible sources: A multi-technique approach.
    Suneel V; Rao VT; Suresh G; Chaudhary A; Vethamony P; Ratheesh R
    Mar Pollut Bull; 2019 Sep; 146():683-695. PubMed ID: 31426210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote sensing assessment of oil spills near a damaged platform in the Gulf of Mexico.
    Sun S; Hu C; Garcia-Pineda O; Kourafalou V; Le Hénaff M; Androulidakis Y
    Mar Pollut Bull; 2018 Nov; 136():141-151. PubMed ID: 30509795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill: Implications for spatial resolution requirements of remote sensors.
    Sun S; Hu C; Feng L; Swayze GA; Holmes J; Graettinger G; MacDonald I; Garcia O; Leifer I
    Mar Pollut Bull; 2016 Feb; 103(1-2):276-285. PubMed ID: 26725867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on temporary resolution for offshore marine oil spill emergencies based on remote sensing system.
    Lan GX; Dong KX; Lin JJ
    J Environ Biol; 2016 Sep; 37(5 Spec No):1177-1180. PubMed ID: 29989750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring.
    De Padova D; Mossa M; Adamo M; De Carolis G; Pasquariello G
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5530-5543. PubMed ID: 28028707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of oil spill remote sensing.
    Fingas M; Brown C
    Mar Pollut Bull; 2014 Jun; 83(1):9-23. PubMed ID: 24759508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria.
    Ozigis MS; Kaduk JD; Jarvis CH
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3621-3635. PubMed ID: 30535661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea.
    Angelliaume S; Ceamanos X; Viallefont-Robinet F; Baqué R; Déliot P; Miegebielle V
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28767059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiband directional reflectance properties of oil-in-water emulsion: application for identification of oil spill types.
    Lai Q; Xie Y; Wang C; Wang M; Tan J
    Appl Opt; 2021 Aug; 60(23):6902-6909. PubMed ID: 34613171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.