BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35461031)

  • 1. PP2A
    Hollenstein DM; Veis J; Romanov N; Gérecová G; Ogris E; Hartl M; Ammerer G; Reiter W
    Microbiol Res; 2022 Jul; 260():127031. PubMed ID: 35461031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1.
    Bilsland-Marchesan E; Ariño J; Saito H; Sunnerhagen P; Posas F
    Mol Cell Biol; 2000 Jun; 20(11):3887-95. PubMed ID: 10805732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance.
    Bilsland E; Molin C; Swaminathan S; Ramne A; Sunnerhagen P
    Mol Microbiol; 2004 Sep; 53(6):1743-56. PubMed ID: 15341652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Premature Silencing of the Spindle Assembly Checkpoint Is Prevented by the Bub1-H2A-Sgo1-PP2A Axis in
    Jin F; Bokros M; Wang Y
    Genetics; 2017 Mar; 205(3):1169-1178. PubMed ID: 28040741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying protein kinase-specific effectors of the osmostress response in yeast.
    Romanov N; Hollenstein DM; Janschitz M; Ammerer G; Anrather D; Reiter W
    Sci Signal; 2017 Mar; 10(469):. PubMed ID: 28270554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of RCK2 MAPKAP (MAPK-activated protein kinase) rescues yeast cells sensitivity to osmotic stress.
    Kumar V; Hart AJ; Wimalasena TT; Tucker GA; Greetham D
    Microb Cell Fact; 2015 Jun; 14():85. PubMed ID: 26062605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PP2ARts1 is a master regulator of pathways that control cell size.
    Zapata J; Dephoure N; Macdonough T; Yu Y; Parnell EJ; Mooring M; Gygi SP; Stillman DJ; Kellogg DR
    J Cell Biol; 2014 Feb; 204(3):359-76. PubMed ID: 24493588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast.
    Teige M; Scheikl E; Reiser V; Ruis H; Ammerer G
    Proc Natl Acad Sci U S A; 2001 May; 98(10):5625-30. PubMed ID: 11344302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast.
    Castermans D; Somers I; Kriel J; Louwet W; Wera S; Versele M; Janssens V; Thevelein JM
    Cell Res; 2012 Jun; 22(6):1058-77. PubMed ID: 22290422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Checkpoints in a yeast differentiation pathway coordinate signaling during hyperosmotic stress.
    Nagiec MJ; Dohlman HG
    PLoS Genet; 2012 Jan; 8(1):e1002437. PubMed ID: 22242015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast protein phosphatase 2A-Cdc55 regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 chromatin recruitment.
    Reiter W; Klopf E; De Wever V; Anrather D; Petryshyn A; Roetzer A; Niederacher G; Roitinger E; Dohnal I; Görner W; Mechtler K; Brocard C; Schüller C; Ammerer G
    Mol Cell Biol; 2013 Mar; 33(5):1057-72. PubMed ID: 23275436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TORC2 signaling is antagonized by protein phosphatase 2A and the Far complex in Saccharomyces cerevisiae.
    Pracheil T; Thornton J; Liu Z
    Genetics; 2012 Apr; 190(4):1325-39. PubMed ID: 22298706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phosphatase-centric mechanism drives stress signaling response.
    Hollenstein DM; Gérecová G; Romanov N; Ferrari J; Veis J; Janschitz M; Beyer R; Schüller C; Ogris E; Hartl M; Ammerer G; Reiter W
    EMBO Rep; 2021 Nov; 22(11):e52476. PubMed ID: 34558777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.
    Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R
    FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of MAP kinase Hog1 by calmodulin during hyperosmotic stress.
    Kim J; Oh J; Sung GH
    Biochim Biophys Acta; 2016 Nov; 1863(11):2551-2559. PubMed ID: 27421986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redundant Regulation of Cdk1 Tyrosine Dephosphorylation in Saccharomyces cerevisiae.
    Kennedy EK; Dysart M; Lianga N; Williams EC; Pilon S; Doré C; Deneault JS; Rudner AD
    Genetics; 2016 Mar; 202(3):903-10. PubMed ID: 26715668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cdc14 and PP2A Phosphatases Cooperate to Shape Phosphoproteome Dynamics during Mitotic Exit.
    Touati SA; Hofbauer L; Jones AW; Snijders AP; Kelly G; Uhlmann F
    Cell Rep; 2019 Nov; 29(7):2105-2119.e4. PubMed ID: 31722221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae.
    Hughes Hallett JE; Luo X; Capaldi AP
    Genetics; 2014 Oct; 198(2):773-86. PubMed ID: 25085507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways.
    Sun Y; Miao Y; Yamane Y; Zhang C; Shokat KM; Takematsu H; Kozutsumi Y; Drubin DG
    Mol Biol Cell; 2012 Jun; 23(12):2388-98. PubMed ID: 22535525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae.
    Petty EL; Lafon A; Tomlinson SL; Mendelsohn BA; Pillus L
    Genetics; 2016 Aug; 203(4):1693-707. PubMed ID: 27317677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.