These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 35461062)
1. Assessment of a powered ankle exoskeleton on human stability and balance. Gonzalez S; Stegall P; Cain SM; Siu HC; Stirling L Appl Ergon; 2022 Sep; 103():103768. PubMed ID: 35461062 [TBL] [Abstract][Full Text] [Related]
2. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544 [TBL] [Abstract][Full Text] [Related]
3. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
4. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
5. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking. Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846 [TBL] [Abstract][Full Text] [Related]
6. Individuals differ in muscle activation patterns during early adaptation to a powered ankle exoskeleton. Acosta-Sojo Y; Stirling L Appl Ergon; 2022 Jan; 98():103593. PubMed ID: 34600306 [TBL] [Abstract][Full Text] [Related]
7. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure. Yang W; Zhang J; Zhang S; Yang C Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339443 [TBL] [Abstract][Full Text] [Related]
8. The effect of stride length on lower extremity joint kinetics at various gait speeds. McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565 [TBL] [Abstract][Full Text] [Related]
9. Preliminary Validation of Proportional Myoelectric Control of A Commercially Available Robotic Ankle Exoskeleton. Hybart RL; Ferris DP IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-5. PubMed ID: 36176129 [TBL] [Abstract][Full Text] [Related]
10. Development of an unpowered ankle exoskeleton for walking assist. Leclair J; Pardoel S; Helal A; Doumit M Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353 [No Abstract] [Full Text] [Related]
11. Gait variability of outdoor vs treadmill walking with bilateral robotic ankle exoskeletons under proportional myoelectric control. Hybart R; Ferris D PLoS One; 2023; 18(11):e0294241. PubMed ID: 37956157 [TBL] [Abstract][Full Text] [Related]
12. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study. Fang Y; Orekhov G; Lerner ZF Gait Posture; 2022 Jun; 95():256-263. PubMed ID: 33248858 [TBL] [Abstract][Full Text] [Related]
13. Motor modules during adaptation to walking in a powered ankle exoskeleton. Jacobs DA; Koller JR; Steele KM; Ferris DP J Neuroeng Rehabil; 2018 Jan; 15(1):2. PubMed ID: 29298705 [TBL] [Abstract][Full Text] [Related]
14. Design of an Unpowered Ankle-Foot Exoskeleton Used for Walking Assistance. Liu L; Wei W; Zheng K; Diao Y; Wang Z; Li G; Zhao G Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4501-4504. PubMed ID: 34892218 [TBL] [Abstract][Full Text] [Related]
15. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network. Lee T; Kim I; Lee SH Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587 [TBL] [Abstract][Full Text] [Related]
16. Actuation Timing Perception of a Powered Ankle Exoskeleton and Its Associated Ankle Angle Changes During Walking. Peng X; Acosta-Sojo Y; Wu MI; Stirling L IEEE Trans Neural Syst Rehabil Eng; 2022; 30():869-877. PubMed ID: 35333715 [TBL] [Abstract][Full Text] [Related]
17. Impact of Haptic Cues and an Active Ankle Exoskeleton on Gait Characteristics. Wu MI; Stegall P; Siu HC; Stirling L Hum Factors; 2024 Mar; 66(3):904-915. PubMed ID: 35815866 [TBL] [Abstract][Full Text] [Related]
18. Altering gait variability with an ankle exoskeleton. Antonellis P; Galle S; De Clercq D; Malcolm P PLoS One; 2018; 13(10):e0205088. PubMed ID: 30356309 [TBL] [Abstract][Full Text] [Related]
19. The Effects of Exoskeleton Assistance at the Ankle on Sensory Integration During Standing Balance. Canete S; Wilson EB; Wright WG; Jacobs DA IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4428-4438. PubMed ID: 37934648 [TBL] [Abstract][Full Text] [Related]
20. Adaptation to walking with an exoskeleton that assists ankle extension. Galle S; Malcolm P; Derave W; De Clercq D Gait Posture; 2013 Jul; 38(3):495-9. PubMed ID: 23465319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]