These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35461100)

  • 1. Regional patterns and drivers of total nitrogen trends in the Chesapeake Bay watershed: Insights from machine learning approaches and management implications.
    Zhang Q; Bostic JT; Sabo RD
    Water Res; 2022 Jun; 218():118443. PubMed ID: 35461100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Major point and nonpoint sources of nutrient pollution to surface water have declined throughout the Chesapeake Bay watershed.
    Sabo RD; Sullivan B; Wu C; Trentacoste E; Zhang Q; Shenk GW; Bhatt G; Linker LC
    Environ Res Commun; 2022 May; 4(4):1-11. PubMed ID: 37089436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling estrogenic activity in streams throughout the Potomac and Chesapeake Bay watersheds.
    Gordon S; Jones DK; Blazer VS; Iwanowicz L; Williams B; Smalling K
    Environ Monit Assess; 2021 Feb; 193(2):105. PubMed ID: 33527185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional Analysis of Nitrogen Flow within the Chesapeake Bay Watershed Food Production Chain Inclusive of Trade.
    Mohammadpour P; Grady C
    Environ Sci Technol; 2023 Mar; 57(11):4619-4631. PubMed ID: 36889680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient limitation of phytoplankton in three tributaries of Chesapeake Bay: Detecting responses following nutrient reductions.
    Zhang Q; Fisher TR; Buchanan C; Gustafson AB; Karrh RR; Murphy RR; Testa JM; Tian R; Tango PJ
    Water Res; 2022 Nov; 226():119099. PubMed ID: 36302271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors driving nutrient trends in streams of the Chesapeake Bay watershed.
    Ator SW; Blomquist JD; Webber JS; Chanat JG
    J Environ Qual; 2020 Jul; 49(4):812-834. PubMed ID: 33016477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riverine discharges to Chesapeake Bay: Analysis of long-term (1927-2014) records and implications for future flows in the Chesapeake Bay basin.
    Rice KC; Moyer DL; Mills AL
    J Environ Manage; 2017 Dec; 204(Pt 1):246-254. PubMed ID: 28888206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The statistical power to detect regional temporal trends in riverine contaminants in the Chesapeake Bay Watershed, USA.
    Wagner T; McLaughlin P; Smalling K; Breitmeyer S; Gordon S; Noe GB
    Sci Total Environ; 2022 Mar; 812():152435. PubMed ID: 34942241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient Improvements in Chesapeake Bay: Direct Effect of Load Reductions and Implications for Coastal Management.
    Murphy RR; Keisman J; Harcum J; Karrh RR; Lane M; Perry ES; Zhang Q
    Environ Sci Technol; 2022 Jan; 56(1):260-270. PubMed ID: 34931816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Quality Functions of Riparian Forest Buffers in Chesapeake Bay Watersheds.
    Lowrance R; Altier LS; Newbold JD; Schnabel RR; Groffman PM; Denver JM; Correll DL; Gilliam JW; Robinson JL; Brinsfield RB; Staver KW; Lucas W; Todd AH
    Environ Manage; 1997 Sep; 21(5):687-712. PubMed ID: 9236284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management.
    Zhang Q; Fisher TR; Trentacoste EM; Buchanan C; Gustafson AB; Karrh R; Murphy RR; Keisman J; Wu C; Tian R; Testa JM; Tango PJ
    Water Res; 2021 Jan; 188():116407. PubMed ID: 33065415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of the Chesapeake Bay management strategy to improve water quality in small agricultural watersheds.
    Fox RJ; Fisher TR; Gustafson AB; Koontz EL; Lepori-Bui M; Kvalnes KL; Bunnell-Young DE; Gardner JR; Lewis J; Winsten JR; Fisher KA; Silaphone K
    J Environ Manage; 2021 Dec; 299():113478. PubMed ID: 34488113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed.
    Anmala J; Turuganti V
    Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding river pollution trends and their landscape determinants in an ecologically fragile karst basin using a machine learning model.
    Xu G; Fan H; Oliver DM; Dai Y; Li H; Shi Y; Long H; Xiong K; Zhao Z
    Environ Res; 2022 Nov; 214(Pt 4):113843. PubMed ID: 35931190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of spatiotemporal nutrient patterns in a coastal bay via an integrated k-means clustering and gravity model.
    Chang NB; Wimberly B; Xuan Z
    J Environ Monit; 2012 Mar; 14(3):992-1005. PubMed ID: 22327360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term seasonal trends of nitrogen, phosphorus, and suspended sediment load from the non-tidal Susquehanna River Basin to Chesapeake Bay.
    Zhang Q; Brady DC; Ball WP
    Sci Total Environ; 2013 May; 452-453():208-21. PubMed ID: 23506853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric nitrogen deposition in the Chesapeake Bay watershed: A history of change.
    Burns DA; Bhatt G; Linker LC; Bash JO; Capel PD; Shenk GW
    Atmos Environ (1994); 2021 Apr; 251(15):1-118277. PubMed ID: 34504390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of nutrient and sediment export patterns in the Chesapeake Bay watershed: Complex and non-stationary concentration-discharge relationships.
    Zhang Q
    Sci Total Environ; 2018 Mar; 618():1268-1283. PubMed ID: 29103643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources.
    Hu M; Liu Y; Zhang Y; Dahlgren RA; Chen D
    Water Res; 2019 Mar; 150():418-430. PubMed ID: 30557828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Point sources and agricultural practices control spatial-temporal patterns of orthophosphate in tributaries to Chesapeake Bay.
    Fanelli RM; Blomquist JD; Hirsch RM
    Sci Total Environ; 2019 Feb; 652():422-433. PubMed ID: 30368173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.