These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 35461126)

  • 41. Multi-scale ResNet and BiGRU automatic sleep staging based on attention mechanism.
    Liu C; Yin Y; Sun Y; Ersoy OK
    PLoS One; 2022; 17(6):e0269500. PubMed ID: 35709101
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extracting Multi-Scale and Salient Features by MSE Based U-Structure and CBAM for Sleep Staging.
    Liu Z; Luo S; Lu Y; Zhang Y; Jiang L; Xiao H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():31-38. PubMed ID: 36260576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-Layer Graph Attention Network for Sleep Stage Classification Based on EEG.
    Wang Q; Guo Y; Shen Y; Tong S; Guo H
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501974
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multi-Modal Sleep Stage Classification With Two-Stream Encoder-Decoder.
    Zhang Z; Lin BS; Peng CW; Lin BS
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2096-2105. PubMed ID: 38848223
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An explainable deep-learning model to stage sleep states in children and propose novel EEG-related patterns in sleep apnea.
    Vaquerizo-Villar F; Gutiérrez-Tobal GC; Calvo E; Álvarez D; Kheirandish-Gozal L; Del Campo F; Gozal D; Hornero R
    Comput Biol Med; 2023 Oct; 165():107419. PubMed ID: 37703716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An attention-based temporal convolutional network for rodent sleep stage classification across species, mutants and experimental environments with single-channel electroencephalogram.
    Liu Y; Yang Z; You Y; Shan W; Ban W
    Physiol Meas; 2022 Aug; 43(8):. PubMed ID: 35927982
    [No Abstract]   [Full Text] [Related]  

  • 47. A Sequential End-to-End Neonatal Sleep Staging Model with Squeeze and Excitation Blocks and Sequential Multi-Scale Convolution Neural Networks.
    Zhu H; Xu Y; Wu Y; Shen N; Wang L; Chen C; Chen W
    Int J Neural Syst; 2024 Mar; 34(3):2450013. PubMed ID: 38369905
    [TBL] [Abstract][Full Text] [Related]  

  • 48. EOGNET: A Novel Deep Learning Model for Sleep Stage Classification Based on Single-Channel EOG Signal.
    Fan J; Sun C; Long M; Chen C; Chen W
    Front Neurosci; 2021; 15():573194. PubMed ID: 34321991
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inter-database validation of a deep learning approach for automatic sleep scoring.
    Alvarez-Estevez D; Rijsman RM
    PLoS One; 2021; 16(8):e0256111. PubMed ID: 34398931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated sleep stage scoring of the Sleep Heart Health Study using deep neural networks.
    Zhang L; Fabbri D; Upender R; Kent D
    Sleep; 2019 Oct; 42(11):. PubMed ID: 31289828
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MS-HNN: Multi-Scale Hierarchical Neural Network With Squeeze and Excitation Block for Neonatal Sleep Staging Using a Single-Channel EEG.
    Zhu H; Wang L; Shen N; Wu Y; Feng S; Xu Y; Chen C; Chen W
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2195-2204. PubMed ID: 37053052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [A hybrid attention temporal sequential network for sleep stage classification].
    Jin Z; Jia K; Yuan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):241-248. PubMed ID: 33913283
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An automatic method using MFCC features for sleep stage classification.
    Pei W; Li Y; Wen P; Yang F; Ji X
    Brain Inform; 2024 Feb; 11(1):6. PubMed ID: 38340211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modality-Specific Feature Selection, Data Augmentation and Temporal Context for Improved Performance in Sleep Staging.
    Jain R; G RA
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):1031-1042. PubMed ID: 38051608
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automatic sleep stage classification: A light and efficient deep neural network model based on time, frequency and fractional Fourier transform domain features.
    You Y; Zhong X; Liu G; Yang Z
    Artif Intell Med; 2022 May; 127():102279. PubMed ID: 35430040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SleepFCN: A Fully Convolutional Deep Learning Framework for Sleep Stage Classification Using Single-Channel Electroencephalograms.
    Goshtasbi N; Boostani R; Sanei S
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2088-2096. PubMed ID: 35862320
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automatic sleep scoring with LSTM networks: impact of time granularity and input signals.
    Tăuțan AM; Rossi AC; Ionescu B
    Biomed Tech (Berl); 2022 Aug; 67(4):267-281. PubMed ID: 35660133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of Channel Selection and Subject's Age on the Performance of the Single Channel EEG-Based Automatic Sleep Staging Algorithms.
    Nazih W; Shahin M; Eldesouki MI; Ahmed B
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Few-Shot Learning-Based EEG and Stage Transition Sequence Generator for Improving Sleep Staging Performance.
    You Y; Guo X; Zhong X; Yang Z
    Biomedicines; 2022 Nov; 10(12):. PubMed ID: 36551762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.