BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

653 related articles for article (PubMed ID: 35461253)

  • 21. JunB contributes to Id2 repression and the epithelial-mesenchymal transition in response to transforming growth factor-β.
    Gervasi M; Bianchi-Smiraglia A; Cummings M; Zheng Q; Wang D; Liu S; Bakin AV
    J Cell Biol; 2012 Mar; 196(5):589-603. PubMed ID: 22391036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lack of transforming growth factor-β signaling promotes collective cancer cell invasion through tumor-stromal crosstalk.
    Matise LA; Palmer TD; Ashby WJ; Nashabi A; Chytil A; Aakre M; Pickup MW; Gorska AE; Zijlstra A; Moses HL
    Breast Cancer Res; 2012 Jul; 14(4):R98. PubMed ID: 22748014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transforming growth factor-β: A therapeutic target for cancer.
    Haque S; Morris JC
    Hum Vaccin Immunother; 2017 Aug; 13(8):1741-1750. PubMed ID: 28575585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-β-dependent epithelial to mesenchymal transition.
    Tang H; He H; Ji H; Gao L; Mao J; Liu J; Lin H; Wu T
    J Surg Res; 2015 Jul; 197(1):167-75. PubMed ID: 25911951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmembrane protein 88 inhibits transforming growth factor-β1-induced-extracellular matrix accumulation and epithelial-mesenchymal transition program in human pleural mesothelial cells through modulating TGF-β1/Smad pathway.
    Sun Z; Ning Q; Li H; Hu T; Tang L; Wen Q; Shen L
    J Recept Signal Transduct Res; 2022 Feb; 42(1):60-66. PubMed ID: 33167758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [TGF-β signaling pathways in cancers].
    Talar B; Czyż M
    Postepy Hig Med Dosw (Online); 2013 Sep; 67():1008-17. PubMed ID: 24088545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring anti-TGF-β therapies in cancer and fibrosis.
    Hawinkels LJ; Ten Dijke P
    Growth Factors; 2011 Aug; 29(4):140-52. PubMed ID: 21718111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resveratrol inhibits epithelial-mesenchymal transition and renal fibrosis by antagonizing the hedgehog signaling pathway.
    Bai Y; Lu H; Wu C; Liang Y; Wang S; Lin C; Chen B; Xia P
    Biochem Pharmacol; 2014 Dec; 92(3):484-93. PubMed ID: 25219324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TGF-β induces matrisome pathological alterations and EMT in patient-derived prostate cancer tumoroids.
    Fernandes S; Oliver-De La Cruz J; Morazzo S; Niro F; Cassani M; Ďuríková H; Caravella A; Fiore P; Azzato G; De Marco G; Lauria A; Izzi V; Bosáková V; Fric J; Filipensky P; Forte G
    Matrix Biol; 2024 Jan; 125():12-30. PubMed ID: 37944712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel RAS inhibitor 25-O-methylalisol F attenuates epithelial-to-mesenchymal transition and tubulo-interstitial fibrosis by selectively inhibiting TGF-β-mediated Smad3 phosphorylation.
    Chen H; Yang T; Wang MC; Chen DQ; Yang Y; Zhao YY
    Phytomedicine; 2018 Mar; 42():207-218. PubMed ID: 29655688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human umbilical cord mesenchymal stem cell attenuates renal fibrosis via TGF-β/Smad signaling pathways in vivo and in vitro.
    Yu Y; Hu D; Zhou Y; Xiang H; Liu B; Shen L; Long C; Liu X; Lin T; He D; Zhang Y; Xu T; Zhang D; Wei G
    Eur J Pharmacol; 2020 Sep; 883():173343. PubMed ID: 32629029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ionizing Radiation Promotes Epithelial-to-Mesenchymal Transition in Lung Epithelial Cells by TGF-β-producing M2 Macrophages.
    Park HR; Jo SK; Jung U
    In Vivo; 2019; 33(6):1773-1784. PubMed ID: 31662502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis.
    Hao Y; Baker D; Ten Dijke P
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organ Fibrosis and Autoimmunity: The Role of Inflammation in TGFβ-Dependent EMT.
    Sisto M; Ribatti D; Lisi S
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33670735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation.
    Verrecchia F; Mauviel A
    J Invest Dermatol; 2002 Feb; 118(2):211-5. PubMed ID: 11841535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TGF-β Signaling: From Tissue Fibrosis to Tumor Microenvironment.
    Chung JY; Chan MK; Li JS; Chan AS; Tang PC; Leung KT; To KF; Lan HY; Tang PM
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calreticulin regulates transforming growth factor-β-stimulated extracellular matrix production.
    Zimmerman KA; Graham LV; Pallero MA; Murphy-Ullrich JE
    J Biol Chem; 2013 May; 288(20):14584-14598. PubMed ID: 23564462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TGF-beta signaling in cancer radiotherapy.
    Wang J; Xu Z; Wang Z; Du G; Lun L
    Cytokine; 2021 Dec; 148():155709. PubMed ID: 34597918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transforming growth factor-β signaling: Tumorigenesis and targeting for cancer therapy.
    Ahmadi A; Najafi M; Farhood B; Mortezaee K
    J Cell Physiol; 2019 Aug; 234(8):12173-12187. PubMed ID: 30537043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lefty-1 inhibits renal epithelial-mesenchymal transition by antagonizing the TGF-β/Smad signaling pathway.
    Zhang L; Liu X; Liang J; Wu J; Tan D; Hu W
    J Mol Histol; 2020 Feb; 51(1):77-87. PubMed ID: 32065356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.