BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35461444)

  • 1. Interrogating Global Chromatin Interaction Network by High-Throughput Chromosome Conformation Capture (Hi-C) in Plants.
    Wang W; Niu L; Hou C
    Methods Mol Biol; 2022; 2484():55-67. PubMed ID: 35461444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
    Lafontaine DL; Yang L; Dekker J; Gibcus JH
    Curr Protoc; 2021 Jul; 1(7):e198. PubMed ID: 34286910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome Conformation Capture Followed by Genome-Wide Sequencing (Hi-C) in Drosophila Embryos.
    Cardamone F; Zhan Y; Iovino N; Zenk F
    Methods Mol Biol; 2023; 2655():41-55. PubMed ID: 37212987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tethered Chromosome Conformation Capture Sequencing in Triticeae: A Valuable Tool for Genome Assembly.
    Himmelbach A; Walde I; Mascher M; Stein N
    Bio Protoc; 2018 Aug; 8(15):e2955. PubMed ID: 34395764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Hi-C Library Preparation for Plants to Study Their Three-Dimensional Chromatin Interactions on a Genome-Wide Scale.
    Liu C
    Methods Mol Biol; 2017; 1629():155-166. PubMed ID: 28623585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hi-C: a comprehensive technique to capture the conformation of genomes.
    Belton JM; McCord RP; Gibcus JH; Naumova N; Zhan Y; Dekker J
    Methods; 2012 Nov; 58(3):268-76. PubMed ID: 22652625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Easy Hi-C: A Low-Input Method for Capturing Genome Organization.
    Lu L; Jin F
    Methods Mol Biol; 2023; 2599():113-125. PubMed ID: 36427146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing Chromosome Conformation Across Length Scales.
    Yang L; Akgol Oksuz B; Dekker J; Gibcus JH
    J Vis Exp; 2023 Jan; (191):. PubMed ID: 36744801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hi-C in Budding Yeast.
    Belton JM; Dekker J
    Cold Spring Harb Protoc; 2015 Jul; 2015(7):649-61. PubMed ID: 26134906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin Conformation Capture-Based Analysis of Nuclear Architecture.
    Grob S; Grossniklaus U
    Methods Mol Biol; 2017; 1456():15-32. PubMed ID: 27770354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of Cell-Type-Specific Chromatin Organization: In Situ Hi-C Library Preparation for Low-Input Plant Materials.
    Wang N; Liu C
    Methods Mol Biol; 2020; 2093():115-127. PubMed ID: 32088893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Nodewalk assay to quantitate chromatin fiber interactomes in very small cell populations.
    Vestlund J; Sumida N; Mehmood R; Bhartiya D; Wu S; Göndör A
    Nat Protoc; 2023 Mar; 18(3):755-782. PubMed ID: 36434098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iteratively improving Hi-C experiments one step at a time.
    Golloshi R; Sanders JT; McCord RP
    Methods; 2018 Jun; 142():47-58. PubMed ID: 29723572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells.
    Ramani V; Deng X; Qiu R; Lee C; Disteche CM; Noble WS; Shendure J; Duan Z
    Methods; 2020 Jan; 170():61-68. PubMed ID: 31536770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome Conformation Capture for Large Genomes.
    Kawaguchi A; Tanaka EM
    Methods Mol Biol; 2023; 2562():291-318. PubMed ID: 36272084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome Conformation Capture of Mitotic Chromosomes.
    Cápal P
    Methods Mol Biol; 2023; 2672():485-500. PubMed ID: 37335495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of 3D Interactions Between Promoters and Distal Regulatory Elements with Promoter Capture Hi-C (PCHi-C).
    Karasu N; Sexton T
    Methods Mol Biol; 2021; 2351():229-248. PubMed ID: 34382193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation.
    Belaghzal H; Dekker J; Gibcus JH
    Methods; 2017 Jul; 123():56-65. PubMed ID: 28435001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.