These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35461498)

  • 21. Propagation characteristics of interface waves between a porous medium and a sediment-containing two-phase fluid.
    Han Q; Qi L; Shan M; Yin C; Jiang X; Zhu C
    Ultrasonics; 2017 Nov; 81():73-80. PubMed ID: 28595165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A unifying fractional wave equation for compressional and shear waves.
    Holm S; Sinkus R
    J Acoust Soc Am; 2010 Jan; 127(1):542-59. PubMed ID: 20058999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation.
    Wismer MG
    J Acoust Soc Am; 2006 Dec; 120(6):3493-502. PubMed ID: 17225379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shear wave speed dispersion and attenuation in granular marine sediments.
    Kimura M
    J Acoust Soc Am; 2013 Jul; 134(1):144-55. PubMed ID: 23862793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear Biot waves in porous media with application to unconsolidated granular media.
    Dazel O; Tournat V
    J Acoust Soc Am; 2010 Feb; 127(2):692-702. PubMed ID: 20136191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monochromatic Wave of Fluid Pressure in a Porous Rock.
    Li G; Miao Y; Mei Y
    Ground Water; 2023; 61(4):544-551. PubMed ID: 36250973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spherical wave propagation in a poroelastic medium with infinite permeability: time domain solution.
    Ozyazicioglu M
    ScientificWorldJournal; 2014; 2014():813097. PubMed ID: 24701190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exact and approximate analytical time-domain Green's functions for space-fractional wave equations.
    Wiseman LM; Kelly JF; McGough RJ
    J Acoust Soc Am; 2019 Aug; 146(2):1150. PubMed ID: 31472576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Approximate expressions for viscous attenuation in marine sediments: relating Biot's "critical" and "peak" frequencies.
    Turgut A
    J Acoust Soc Am; 2000 Aug; 108(2):513-8. PubMed ID: 10955615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effective equations governing an active poroelastic medium.
    Collis J; Brown DL; Hubbard ME; O'Dea RD
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160755. PubMed ID: 28293138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustical modeling and Bayesian inference for rigid porous media in the low-mid frequency regime.
    Roncen R; Fellah ZEA; Lafarge D; Piot E; Simon F; Ogam E; Fellah M; Depollier C
    J Acoust Soc Am; 2018 Dec; 144(6):3084. PubMed ID: 30599665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of critical and viscous frequencies for Biot theory in cancellous bone.
    Hughes ER; Leighton TG; Petley GW; White PR; Chivers RC
    Ultrasonics; 2003 Jul; 41(5):365-8. PubMed ID: 12788218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stochastic theory of dynamic permeability in poroelastic media.
    Müller TM; Sahay PN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026329. PubMed ID: 21929112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of three geoacoustic models using Bayesian inversion and selection techniques applied to wave speed and attenuation measurements.
    Bonomo AL; Isakson MJ
    J Acoust Soc Am; 2018 Apr; 143(4):2501. PubMed ID: 29716256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rayleigh scattering of acoustic waves in rigid porous media.
    Boutin C
    J Acoust Soc Am; 2007 Oct; 122(4):1888-905. PubMed ID: 17902826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of broadband models for sand sediments.
    Buchanan JL
    J Acoust Soc Am; 2006 Dec; 120(6):3584-98. PubMed ID: 17225388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generalized hyperbolic fractional equation for transient-wave propagation in layered rigid-frame porous materials.
    Fellah M; Fellah ZE; Depollier C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016601. PubMed ID: 18351945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A first-order statistical smoothing approximation for the coherent wave field in random porous random media.
    Müller TM; Gurevich B
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1796-805. PubMed ID: 15898626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective fractional acoustic wave equations in one-dimensional random multiscale media.
    Garnier J; Solna K
    J Acoust Soc Am; 2010 Jan; 127(1):62-72. PubMed ID: 20058951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.