These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35461498)

  • 41. Fractional biharmonic operator equation model for arbitrary frequency-dependent scattering attenuation in acoustic wave propagation.
    Chen W; Fang J; Pang G; Holm S
    J Acoust Soc Am; 2017 Jan; 141(1):244. PubMed ID: 28147566
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Generalized equation for transient-wave propagation in continuous inhomogeneous rigid-frame porous materials at low frequencies.
    Fellah M; Fellah ZE; Ogam E; Mitri FG; Depollier C
    J Acoust Soc Am; 2013 Dec; 134(6):4642. PubMed ID: 25669276
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spring-damper equivalents of the fractional, poroelastic, and poroviscoelastic models for elastography.
    Holm S
    NMR Biomed; 2018 Oct; 31(10):e3854. PubMed ID: 29178340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography.
    Holm S; Näsholm SP
    Ultrasound Med Biol; 2014 Apr; 40(4):695-703. PubMed ID: 24433745
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wettability effect on wave propagation in saturated porous medium.
    Li JX; Rezaee R; Müller TM
    J Acoust Soc Am; 2020 Feb; 147(2):911. PubMed ID: 32113257
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A phase space approach to wave propagation with dispersion.
    Ben-Benjamin JS; Cohen L; Loughlin PJ
    J Acoust Soc Am; 2015 Aug; 138(2):1122-31. PubMed ID: 26328726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A causal and fractional all-frequency wave equation for lossy media.
    Holm S; Näsholm SP
    J Acoust Soc Am; 2011 Oct; 130(4):2195-202. PubMed ID: 21973374
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Restrictions on wave equations for passive media.
    Holm S; Holm MB
    J Acoust Soc Am; 2017 Oct; 142(4):1888. PubMed ID: 29092559
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time-domain analysis of power law attenuation in space-fractional wave equations.
    Zhao X; McGough RJ
    J Acoust Soc Am; 2018 Jul; 144(1):467. PubMed ID: 30075676
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of the Physical Mechanism of Acoustic Attenuation in Viscous Isotropic Solids.
    Fa L; Li L; Gong H; Chen W; Jiang J; You G; Liang J; Zhang Y; Zhao M
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144149
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonlinear wave propagation in porous materials based on the Biot theory.
    Tong LH; Liu YS; Geng DX; Lai SK
    J Acoust Soc Am; 2017 Aug; 142(2):756. PubMed ID: 28863584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations.
    Germán Rubino J; Monachesi LB; Müller TM; Guarracino L; Holliger K
    J Acoust Soc Am; 2013 Dec; 134(6):4742. PubMed ID: 25669286
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-dimensional finite-difference time-domain formulation for sound propagation in a temperature-dependent elastomer-fluid medium.
    Huang Y; Hou H; Oterkus S; Wei Z; Gao N
    J Acoust Soc Am; 2020 Jan; 147(1):428. PubMed ID: 32007005
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solitary wave solutions to some nonlinear fractional evolution equations in mathematical physics.
    Ali HMS; Habib MA; Miah MM; Akbar MA
    Heliyon; 2020 Apr; 6(4):e03727. PubMed ID: 32322721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-frequency dispersion from viscous drag at the grain-grain contact in water-saturated sand.
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2008 Nov; 124(5):EL296-301. PubMed ID: 19045681
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A porous medium model for mud.
    Chotiros NP
    J Acoust Soc Am; 2021 Jan; 149(1):629. PubMed ID: 33514181
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A hybrid explicit implicit staggered grid finite-difference scheme for the first-order acoustic wave equation modeling.
    Liang W; Wang Y; Cao J; Iturrarán-Viveros U
    Sci Rep; 2022 Jun; 12(1):10967. PubMed ID: 35768539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Validity of the limp model for porous materials: a criterion based on the Biot theory.
    Doutres O; Dauchez N; Génevaux JM; Dazel O
    J Acoust Soc Am; 2007 Oct; 122(4):2038-48. PubMed ID: 17902841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone.
    Anderson CC; Marutyan KR; Holland MR; Wear KA; Miller JG
    J Acoust Soc Am; 2008 Sep; 124(3):1781-9. PubMed ID: 19045668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.