BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35461847)

  • 1. Novel biogenic gold nanoparticles stabilized on poly(styrene-co-maleic anhydride) as an effective material for reduction of nitrophenols and colorimetric detection of Pb(II).
    Nguyen THA; Le TTV; Huynh BA; Nguyen NV; Le VT; Doan VD; Tran VA; Nguyen AT; Cao XT; Vasseghian Y
    Environ Res; 2022 Sep; 212(Pt B):113281. PubMed ID: 35461847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective reduction of nitrophenols and colorimetric detection of Pb(ii) ions by
    Le VT; Duong TG; Le VT; Phan TL; Huong Nguyen TL; Chau TP; Doan VD
    RSC Adv; 2021 Apr; 11(25):15438-15448. PubMed ID: 35424067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogenic gold nanoparticles for reduction of 4-nitrophenol to 4-aminophenol: an eco-friendly bioremediation.
    Nabikhan A; Rathinam S; Kandasamy K
    IET Nanobiotechnol; 2018 Jun; 12(4):479-483. PubMed ID: 29768233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recyclable colorimetric sensor of Cr
    Sang F; Li X; Zhang Z; Liu J; Chen G
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():109-116. PubMed ID: 29223455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picomolar level sensorial dual colorimetric gold nanoparticle sensor for Zn
    Bhattacharyya M; Hossain M
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123682. PubMed ID: 38042120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au.
    Shen W; Qu Y; Pei X; Li S; You S; Wang J; Zhang Z; Zhou J
    J Hazard Mater; 2017 Jan; 321():299-306. PubMed ID: 27637096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic reduction of 4-nitrophenol and photo inhibition of Pseudomonas aeruginosa using gold nanoparticles as photocatalyst.
    Khan S; Runguo W; Tahir K; Jichuan Z; Zhang L
    J Photochem Photobiol B; 2017 May; 170():181-187. PubMed ID: 28437746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric determination of p-nitrophenol by using ELISA microwells modified with an adhesive polydopamine nanofilm containing catalytically active gold nanoparticles.
    Scarano S; Palladino P; Pascale E; Brittoli A; Minunni M
    Mikrochim Acta; 2019 Feb; 186(3):146. PubMed ID: 30707372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.
    Bagci PO; Wang YC; Gunasekaran S
    J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of catalytic activity of fibrinogen-stabilized gold nanoparticles via thrombin-induced inclusion of nanoparticle into fibrin: Application for thrombin sensing with more than 10
    Lin JH; Huang KH; Zhan SW; Yu CJ; Tseng WL; Hsieh MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():59-65. PubMed ID: 30445261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction.
    Qu Y; You S; Zhang X; Pei X; Shen W; Li Z; Li S; Zhang Z
    Bioprocess Biosyst Eng; 2018 Mar; 41(3):359-367. PubMed ID: 29188359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles.
    Ratnarathorn N; Chailapakul O; Dungchai W
    Talanta; 2015 Jan; 132():613-8. PubMed ID: 25476352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides.
    Gangula A; Podila R; M R; Karanam L; Janardhana C; Rao AM
    Langmuir; 2011 Dec; 27(24):15268-74. PubMed ID: 22026721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol.
    Lu W; Ning R; Qin X; Zhang Y; Chang G; Liu S; Luo Y; Sun X
    J Hazard Mater; 2011 Dec; 197():320-6. PubMed ID: 22019107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric determination of F
    Amourizi F; Dashtian K; Ghaedi M; Hajati S
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117606. PubMed ID: 31614272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Sensitive and Selective Colorimetric Sensor of Mercury (II) based on Layer-by-Layer Deposition of Gold/Silver Bimetallic Nanoparticles.
    Mathaweesansurn A; Vittayakorn N; Detsri E
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32992632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation and recovery of lead from a low concentration solution of lead(II) and zinc(II) using the hydrolysis production of poly styrene-co-maleic anhydride.
    Liang X; Su Y; Yang Y; Qin W
    J Hazard Mater; 2012 Feb; 203-204():183-7. PubMed ID: 22206974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion.
    Huang KW; Yu CJ; Tseng WL
    Biosens Bioelectron; 2010 Jan; 25(5):984-9. PubMed ID: 19782557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric detection of Hg
    Wang R; Zhang H; Zhang X; Li Z; Yang Y; Zheng R; Qu Y
    Biotechnol Lett; 2020 Sep; 42(9):1691-1697. PubMed ID: 32297012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.