BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35462297)

  • 1. Minute-sensitive real-time monitoring of neural cells through printed graphene microelectrodes.
    Niaraki A; Abbasi Shirsavar M; Aykar SS; Taghavimehr M; Montazami R; Hashemi NN
    Biosens Bioelectron; 2022 Aug; 210():114284. PubMed ID: 35462297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene Microelectrodes for Real-Time Impedance Spectroscopy of Neural Cells.
    Niaraki A; McNamara MC; Montazami R; Hashemi NN
    ACS Appl Bio Mater; 2022 Jan; 5(1):113-122. PubMed ID: 35014836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Flexible Graphene Multielectrode Arrays.
    Kireev D; Seyock S; Ernst M; Maybeck V; Wolfrum B; Offenhäusser A
    Biosensors (Basel); 2016 Dec; 7(1):. PubMed ID: 28025564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording.
    Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G
    Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiwalled carbon-nanotube-functionalized microelectrode arrays fabricated by microcontact printing: platform for studying chemical and electrical neuronal signaling.
    Fuchsberger K; Le Goff A; Gambazzi L; Toma FM; Goldoni A; Giugliano M; Stelzle M; Prato M
    Small; 2011 Feb; 7(4):524-30. PubMed ID: 21246714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene microelectrode arrays for neural activity detection.
    Du X; Wu L; Cheng J; Huang S; Cai Q; Jin Q; Zhao J
    J Biol Phys; 2015 Sep; 41(4):339-47. PubMed ID: 25712492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Honeycomb-Patterned Graphene Microelectrodes: A Promising Approach for Safe and Effective Retinal Stimulation Based on Electro-Thermo-Mechanical Modeling and Simulation.
    Asghar SA; Mahadevappa M
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):262-271. PubMed ID: 37747869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Electrochemical Impedance Spectroscopy Analysis of Microbial Biofilms on an Electrochemically
    Song J; Li Y; Yin F; Zhang Z; Ke D; Wang D; Yuan Q; Zhang XE
    ACS Sens; 2020 Jun; 5(6):1795-1803. PubMed ID: 32397709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays.
    Seidel D; Obendorf J; Englich B; Jahnke HG; Semkova V; Haupt S; Girard M; Peschanski M; Brüstle O; Robitzki AA
    Biosens Bioelectron; 2016 Dec; 86():277-286. PubMed ID: 27387257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viability of Neural Cells on 3D Printed Graphene Bioelectronics.
    Guo J; Niaraki Asli AE; Williams KR; Lai PL; Wang X; Montazami R; Hashemi NN
    Biosensors (Basel); 2019 Sep; 9(4):. PubMed ID: 31547138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene-Embedded Nanostructural Biotic-Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording.
    Huang WC; Chi HS; Lee YC; Lo YC; Liu TC; Chiang MY; Chen HY; Li SJ; Chen YY; Chen SY
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11270-11282. PubMed ID: 30844235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of Real-Time Spatial and Temporal Behavior of Bacterial Biofilms Using 2-D Impedance Spectroscopy.
    Begly C; Ackart D; Mylius J; Basaraba R; Chicco AJ; Chen TW
    IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):1051-1064. PubMed ID: 32746361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct electrodeposition of Graphene enhanced conductive polymer on microelectrode for biosensing application.
    Wang MH; Ji BW; Gu XW; Tian HC; Kang XY; Yang B; Wang XL; Chen X; Li CY; Liu JQ
    Biosens Bioelectron; 2018 Jan; 99():99-107. PubMed ID: 28743085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet-printed electrochemically reduced graphene oxide microelectrode as a platform for HT-2 mycotoxin immunoenzymatic biosensing.
    Kudr J; Zhao L; Nguyen EP; Arola H; Nevanen TK; Adam V; Zitka O; Merkoçi A
    Biosens Bioelectron; 2020 May; 156():112109. PubMed ID: 32275576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RGO-PANI composite Au microelectrodes for sensitive ECIS analysis of human gastric (MKN-1) cancer cells.
    Yagati AK; Chavan SG; Baek C; Lee D; Lee MH; Min J
    Bioelectrochemistry; 2023 Apr; 150():108347. PubMed ID: 36549174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes.
    Choi CK; English AE; Jun SI; Kihm KD; Rack PD
    Biosens Bioelectron; 2007 May; 22(11):2585-90. PubMed ID: 17113768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.