These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35462906)
1. Transcriptomics and Metabolomics Identify Drug Resistance of Dormant Cell in Colorectal Cancer. Xie L; Huang R; Huang H; Liu X; Yu J Front Pharmacol; 2022; 13():879751. PubMed ID: 35462906 [No Abstract] [Full Text] [Related]
2. Autophagy Inhibition Contributes to Apoptosis of PLK4 Downregulation-induced Dormant Cells in Colorectal Cancer. Tian X; He Y; Qi L; Liu D; Zhou D; Liu Y; Gong W; Han Z; Xia Y; Li H; Wang J; Zhu K; Chen L; Guo H; Zhao Q Int J Biol Sci; 2023; 19(9):2817-2834. PubMed ID: 37324947 [TBL] [Abstract][Full Text] [Related]
3. Nanog mediated by FAO/ACLY signaling induces cellular dormancy in colorectal cancer cells. Zhang M; Peng R; Wang H; Yang Z; Zhang H; Zhang Y; Wang M; Wang H; Lin J; Zhao Q; Liu J Cell Death Dis; 2022 Feb; 13(2):159. PubMed ID: 35177584 [TBL] [Abstract][Full Text] [Related]
4. Identification of Genes Related to 5-Fluorouracil Based Chemotherapy for Colorectal Cancer. Huang X; Ke K; Jin W; Zhu Q; Zhu Q; Mei R; Zhang R; Yu S; Shou L; Sun X; Feng J; Duan T; Mou Y; Xie T; Wu Q; Sui X Front Immunol; 2022; 13():887048. PubMed ID: 35784334 [TBL] [Abstract][Full Text] [Related]
5. Metabolomics reveals that CAF-derived lipids promote colorectal cancer peritoneal metastasis by enhancing membrane fluidity. Peng S; Li Y; Huang M; Tang G; Xie Y; Chen D; Hu Y; Yu T; Cai J; Yuan Z; Wang H; Wang H; Luo Y; Liu X Int J Biol Sci; 2022; 18(5):1912-1932. PubMed ID: 35342344 [TBL] [Abstract][Full Text] [Related]
6. Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer. Peng Z; Ye M; Ding H; Feng Z; Hu K J Transl Med; 2022 Jul; 20(1):302. PubMed ID: 35794563 [TBL] [Abstract][Full Text] [Related]
7. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Hu JL; Wang W; Lan XL; Zeng ZC; Liang YS; Yan YR; Song FY; Wang FF; Zhu XH; Liao WJ; Liao WT; Ding YQ; Liang L Mol Cancer; 2019 May; 18(1):91. PubMed ID: 31064356 [TBL] [Abstract][Full Text] [Related]
8. Cancer-associated fibroblasts impact the clinical outcome and treatment response in colorectal cancer via immune system modulation: a comprehensive genome-wide analysis. Chen YF; Yu ZL; Lv MY; Cai ZR; Zou YF; Lan P; Wu XJ; Gao F Mol Med; 2021 Oct; 27(1):139. PubMed ID: 34717544 [TBL] [Abstract][Full Text] [Related]
9. How fall dormancy benefits alfalfa winter-survival? Physiologic and transcriptomic analyses of dormancy process. Liu ZY; Baoyin T; Li XL; Wang ZL BMC Plant Biol; 2019 May; 19(1):205. PubMed ID: 31109303 [TBL] [Abstract][Full Text] [Related]
10. Activation of anaphase-promoting complex by p53 induces a state of dormancy in cancer cells against chemotherapeutic stress. Dai Y; Wang L; Tang J; Cao P; Luo Z; Sun J; Kiflu A; Sai B; Zhang M; Wang F; Li G; Xiang J Oncotarget; 2016 May; 7(18):25478-92. PubMed ID: 27009858 [TBL] [Abstract][Full Text] [Related]
11. Colorectal cancer and dormant metastases: Put to sleep or destroy? Senchukova MA World J Gastrointest Oncol; 2024 Jun; 16(6):2304-2317. PubMed ID: 38994146 [TBL] [Abstract][Full Text] [Related]
12. Hydrogel-based colorectal cancer organoid co-culture models. Luo X; Fong ELS; Zhu C; Lin QXX; Xiong M; Li A; Li T; Benoukraf T; Yu H; Liu S Acta Biomater; 2021 Sep; 132():461-472. PubMed ID: 33388439 [TBL] [Abstract][Full Text] [Related]
13. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. Deb C; Lee CM; Dubey VS; Daniel J; Abomoelak B; Sirakova TD; Pawar S; Rogers L; Kolattukudy PE PLoS One; 2009 Jun; 4(6):e6077. PubMed ID: 19562030 [TBL] [Abstract][Full Text] [Related]
14. Cancer-associated fibroblasts at the unfavorable desmoplastic stroma promote colorectal cancer aggressiveness: Potential role of ADAM9. Ao T; Mochizuki S; Kajiwara Y; Yonemura K; Shiraishi T; Nagata K; Shinto E; Okamoto K; Nearchou IP; Shimazaki H; Kishi Y; Okada Y; Ueno H Int J Cancer; 2022 May; 150(10):1706-1721. PubMed ID: 35080810 [TBL] [Abstract][Full Text] [Related]
16. Long non-coding RNA profile study identifies a metabolism-related signature for colorectal cancer. Lu Y; Wang W; Liu Z; Ma J; Zhou X; Fu W Mol Med; 2021 Aug; 27(1):83. PubMed ID: 34344319 [TBL] [Abstract][Full Text] [Related]
17. Cancer Recurrence and Omics: Metabolic Signatures of Cancer Dormancy Revealed by Transcriptome Mapping of Genome-Scale Networks. Kutay M; Gozuacik D; Çakır T OMICS; 2022 May; 26(5):270-279. PubMed ID: 35394340 [TBL] [Abstract][Full Text] [Related]
18. The Influence of Recombinational Processes to Induce Dormancy in Resende BC; Oliveira ACS; Guañabens ACP; Repolês BM; Santana V; Hiraiwa PM; Pena SDJ; Franco GR; Macedo AM; Tahara EB; Fragoso SP; Andrade LO; Machado CR Front Cell Infect Microbiol; 2020; 10():5. PubMed ID: 32117793 [TBL] [Abstract][Full Text] [Related]
19. CXCR4/TGF-β1 mediated hepatic stellate cells differentiation into carcinoma-associated fibroblasts and promoted liver metastasis of colon cancer. Tan HX; Gong WZ; Zhou K; Xiao ZG; Hou FT; Huang T; Zhang L; Dong HY; Zhang WL; Liu Y; Huang ZC Cancer Biol Ther; 2020; 21(3):258-268. PubMed ID: 31825725 [No Abstract] [Full Text] [Related]
20. Dormancy cycling: translation-related transcripts are the main difference between dormant and non-dormant seeds in the field. Buijs G; Vogelzang A; Nijveen H; Bentsink L Plant J; 2020 Apr; 102(2):327-339. PubMed ID: 31785171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]