These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35463929)

  • 1. Impact of Spatial Orientation Ability on Air Traffic Conflict Detection in a Simulated Free Route Airspace Environment.
    Zhong JY; Goh SK; Woo CJ; Alam S
    Front Hum Neurosci; 2022; 16():739866. PubMed ID: 35463929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the air traffic controller in future air traffic management: an empirical study of active control versus passive monitoring.
    Metzger U; Parasuraman R
    Hum Factors; 2001; 43(4):519-28. PubMed ID: 12002002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of alerting designs on air traffic controller's eye movement patterns and situation awareness.
    Kearney P; Li WC; Yu CS; Braithwaite G
    Ergonomics; 2019 Feb; 62(2):305-318. PubMed ID: 29943681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing the role of the air traffic controller: how will free flight affect memory for spatial events?
    Nicholls AP; Melia A; Farmer EW; Shaw G; Milne T; Stedmon A; Sharples S; Cox G
    Appl Ergon; 2007 Jul; 38(4):457-63. PubMed ID: 17451635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Difficulty to Break a Relational Complexity Network Can Predict Air Traffic Controllers' Mental Workload and Performance in Conflict Resolution.
    Zhang J; E X; Du F; Yang J; Loft S
    Hum Factors; 2021 Mar; 63(2):240-253. PubMed ID: 31618105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Field Study of Work Type Influence on Air Traffic Controllers' Fatigue Based on Data-Driven PERCLOS Detection.
    Zhang J; Chen Z; Liu W; Ding P; Wu Q
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Analysis of Occurrences Associated with Air Traffic Volume and Air Traffic Controllers' Alertness for Fatigue Risk Management.
    Li WC; Kearney P; Zhang J; Hsu YL; Braithwaite G
    Risk Anal; 2021 Jun; 41(6):1004-1018. PubMed ID: 32920882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Psychophysiological coherence training to moderate air traffic controllers' fatigue on rotating roster.
    Li WC; Zhang J; Kearney P
    Risk Anal; 2023 Feb; 43(2):391-404. PubMed ID: 35212002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative position vectors: an alternative approach to conflict detection in air traffic control.
    Vuckovic A; Sanderson P; Neal A; Gaukrodger S; Wong BL
    Hum Factors; 2013 Oct; 55(5):946-64. PubMed ID: 24218904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.
    Bongiorno C; Miccichè S; Mantegna RN
    PLoS One; 2017; 12(4):e0175036. PubMed ID: 28419160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the Peak-End Effects in Air Traffic Controllers' Mental Workload Ratings.
    Qiao H; Zhang J; Zhang L; Li Y; Loft S
    Hum Factors; 2022 Dec; 64(8):1292-1305. PubMed ID: 33657905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Air Traffic Controller Workload: Trajectory Uncertainty as the Moderator of the Indirect Effect of Traffic Density on Controller Workload Through Traffic Conflict.
    Corver SC; Unger D; Grote G
    Hum Factors; 2016 Jun; 58(4):560-73. PubMed ID: 27076095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual search in complex displays: factors affecting conflict detection by air traffic controllers.
    Remington RW; Johnston JC; Ruthruff E; Gold M; Romera M
    Hum Factors; 2000; 42(3):349-66. PubMed ID: 11132797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.
    Aricò P; Borghini G; Di Flumeri G; Colosimo A; Pozzi S; Babiloni F
    Prog Brain Res; 2016; 228():295-328. PubMed ID: 27590973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using spatial context to support prospective memory in simulated air traffic control.
    Loft S; Finnerty D; Remington RW
    Hum Factors; 2011 Dec; 53(6):662-71. PubMed ID: 22235528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air traffic controller burnout: survey responses regarding job demands, job resources, and health.
    Martinussen M; Richardsen AM
    Aviat Space Environ Med; 2006 Apr; 77(4):422-8. PubMed ID: 16676654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An en route capacity optimization model based on air traffic control process.
    Ren J; Qu S; Wang L; Wang Y
    Math Biosci Eng; 2022 Feb; 19(4):4277-4299. PubMed ID: 35341298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic Strategic Conflict-Management for 4D Trajectories in Free-Route Airspace.
    Pérez-Castán JA; Rodríguez-Sanz Á; Pérez Sanz L; Arnaldo Valdés RM; Gómez Comendador VF; Greatti C; Serrano-Mira L
    Entropy (Basel); 2020 Jan; 22(2):. PubMed ID: 33285934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of relational complexity in an air traffic control conflict detection task.
    Boag C; Neal A; Loft S; Halford GS
    Ergonomics; 2006 Nov; 49(14):1508-26. PubMed ID: 17050391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of air traffic geometry on pilots' conflict detection with cockpit display of traffic information.
    Xu X; Rantanen EM
    Hum Factors; 2007 Jun; 49(3):358-75. PubMed ID: 17552303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.