BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35463950)

  • 61. Mechanism of a hereditary cataract phenotype. Mutations in alphaA-crystallin activate substrate binding.
    Koteiche HA; Mchaourab HS
    J Biol Chem; 2006 May; 281(20):14273-9. PubMed ID: 16531622
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Alpha-crystallin can act as a chaperone under conditions of oxidative stress.
    Wang K; Spector A
    Invest Ophthalmol Vis Sci; 1995 Feb; 36(2):311-21. PubMed ID: 7843902
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A novel mutation (F71L) in alphaA-crystallin with defective chaperone-like function associated with age-related cataract.
    Bhagyalaxmi SG; Srinivas P; Barton KA; Kumar KR; Vidyavathi M; Petrash JM; Bhanuprakash Reddy G; Padma T
    Biochim Biophys Acta; 2009 Oct; 1792(10):974-81. PubMed ID: 19595763
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of modifications of alpha-crystallin on its chaperone and other properties.
    Derham BK; Harding JJ
    Biochem J; 2002 Jun; 364(Pt 3):711-7. PubMed ID: 12049635
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phe71 is essential for chaperone-like function in alpha A-crystallin.
    Santhoshkumar P; Sharma KK
    J Biol Chem; 2001 Dec; 276(50):47094-9. PubMed ID: 11598124
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The role of the conserved COOH-terminal triad in alphaA-crystallin aggregation and functionality.
    Li Y; Schmitz KR; Salerno JC; Koretz JF
    Mol Vis; 2007 Sep; 13():1758-68. PubMed ID: 17960114
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Activation of the unfolded protein response by a cataract-associated αA-crystallin mutation.
    Watson GW; Andley UP
    Biochem Biophys Res Commun; 2010 Oct; 401(2):192-6. PubMed ID: 20833134
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Impact of Subunit Composition on the Uptake of α-Crystallin by Lens and Retina.
    Mueller NH; Fogueri U; Pedler MG; Montana K; Petrash JM; Ammar DA
    PLoS One; 2015; 10(9):e0137659. PubMed ID: 26355842
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function.
    Takata T; Nakamura-Hirota T; Inoue R; Morishima K; Sato N; Sugiyama M; Fujii N
    FEBS J; 2018 Jun; 285(12):2263-2277. PubMed ID: 29676852
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts.
    Andley UP; Goldman JW
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):234-9. PubMed ID: 26071686
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Paradoxical effects of substitution and deletion mutation of Arg56 on the structure and chaperone function of human alphaB-crystallin.
    Biswas A; Goshe J; Miller A; Santhoshkumar P; Luckey C; Bhat MB; Nagaraj RH
    Biochemistry; 2007 Feb; 46(5):1117-27. PubMed ID: 17260942
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The alphaA-crystallin R116C mutant has a higher affinity for forming heteroaggregates with alphaB-crystallin.
    Bera S; Abraham EC
    Biochemistry; 2002 Jan; 41(1):297-305. PubMed ID: 11772029
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The impact of Hydrogen peroxide on structure, stability and functional properties of Human R12C mutant αA-crystallin: The imperative insights into pathomechanism of the associated congenital cataract incidence.
    Khoshaman K; Yousefi R; Tamaddon AM; Saso L; Moosavi-Movahedi AA
    Free Radic Biol Med; 2015 Dec; 89():819-30. PubMed ID: 26459035
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Altered chaperone-like activity of alpha-crystallins promotes cataractogenesis.
    Cheng C; Xia CH; Huang Q; Ding L; Horwitz J; Gong X
    J Biol Chem; 2010 Dec; 285(52):41187-93. PubMed ID: 20959464
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Aggregation of deamidated human betaB2-crystallin and incomplete rescue by alpha-crystallin chaperone.
    Michiel M; Duprat E; Skouri-Panet F; Lampi JA; Tardieu A; Lampi KJ; Finet S
    Exp Eye Res; 2010 Jun; 90(6):688-98. PubMed ID: 20188088
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Changes in solvent accessibility of wild-type and deamidated βB2-crystallin following complex formation with αA-crystallin.
    Lampi KJ; Fox CB; David LL
    Exp Eye Res; 2012 Nov; 104():48-58. PubMed ID: 22982024
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The combined effect of acetylation and glycation on the chaperone and anti-apoptotic functions of human α-crystallin.
    Nahomi RB; Oya-Ito T; Nagaraj RH
    Biochim Biophys Acta; 2013 Jan; 1832(1):195-203. PubMed ID: 22982407
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanism of small heat shock protein function in vivo: a knock-in mouse model demonstrates that the R49C mutation in alpha A-crystallin enhances protein insolubility and cell death.
    Xi JH; Bai F; Gross J; Townsend RR; Menko AS; Andley UP
    J Biol Chem; 2008 Feb; 283(9):5801-14. PubMed ID: 18056999
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The cataract-causing mutation G75V promotes γS-crystallin aggregation by modifying and destabilizing the native structure.
    Zhu S; Xi XB; Duan TL; Zhai Y; Li J; Yan YB; Yao K
    Int J Biol Macromol; 2018 Oct; 117():807-814. PubMed ID: 29857103
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structural and functional studies of D109A human αB-crystallin contributing to the development of cataract and cardiomyopathy diseases.
    Hafizi M; Chebotareva NA; Ghahramani M; Moosavi-Movahedi F; Khaleghinejad SH; Kurganov BI; Moosavi-Movahedi AA; Yousefi R
    PLoS One; 2021; 16(11):e0260306. PubMed ID: 34843556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.