BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

632 related articles for article (PubMed ID: 35464057)

  • 1. Endothelial Dysfunction and Diabetic Cardiomyopathy.
    Wang M; Li Y; Li S; Lv J
    Front Endocrinol (Lausanne); 2022; 13():851941. PubMed ID: 35464057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dysfunction and Phenotypic Derangement in Diabetic Cardiomyopathy.
    Evangelista I; Nuti R; Picchioni T; Dotta F; Palazzuoli A
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31269778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Cardiac Fibrosis in Diabetic Cardiomyopathy: From Pathophysiology to Clinical Diagnostic Tools.
    Pan KL; Hsu YC; Chang ST; Chung CM; Lin CL
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity.
    Jia G; Hill MA; Sowers JR
    Circ Res; 2018 Feb; 122(4):624-638. PubMed ID: 29449364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: molecular abnormalities and phenotypical variants.
    Prandi FR; Evangelista I; Sergi D; Palazzuoli A; Romeo F
    Heart Fail Rev; 2023 May; 28(3):597-606. PubMed ID: 35001338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabetic Cardiomyopathy: From Mechanism to Management in a Nutshell.
    Khan S; Ahmad SS; Kamal MA
    Endocr Metab Immune Disord Drug Targets; 2021; 21(2):268-281. PubMed ID: 32735531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy.
    Knapp M; Tu X; Wu R
    Acta Pharmacol Sin; 2019 Jan; 40(1):1-8. PubMed ID: 29867137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus.
    Nakamura K; Miyoshi T; Yoshida M; Akagi S; Saito Y; Ejiri K; Matsuo N; Ichikawa K; Iwasaki K; Naito T; Namba Y; Yoshida M; Sugiyama H; Ito H
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment.
    Falcão-Pires I; Leite-Moreira AF
    Heart Fail Rev; 2012 May; 17(3):325-44. PubMed ID: 21626163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Diabetes Induction on the Rat Heart: Differences in Oxidative Stress, Inflammatory Cells, and Fibrosis between Subendocardial and Interstitial Myocardial Areas.
    Guido MC; Marques AF; Tavares ER; Tavares de Melo MD; Salemi VMC; Maranhão RC
    Oxid Med Cell Longev; 2017; 2017():5343972. PubMed ID: 28781721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of hyperglycaemia in the development of diabetic cardiomyopathy.
    El Hayek MS; Ernande L; Benitah JP; Gomez AM; Pereira L
    Arch Cardiovasc Dis; 2021 Nov; 114(11):748-760. PubMed ID: 34627704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape.
    Haye A; Ansari MA; Rahman SO; Shamsi Y; Ahmed D; Sharma M
    Eur J Pharmacol; 2020 Dec; 888():173376. PubMed ID: 32810493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy.
    Ali M; Mehmood A; Anjum MS; Tarrar MN; Khan SN; Riazuddin S
    Mol Cell Biochem; 2015 Dec; 410(1-2):267-79. PubMed ID: 26359087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streptozotocin-induced type II diabetic rat administered with nonobesogenic high-fat diet is highly susceptible to myocardial ischemia-reperfusion injury: An insight into the function of mitochondria.
    Ansari M; Gopalakrishnan S; Kurian GA
    J Cell Physiol; 2019 Apr; 234(4):4104-4114. PubMed ID: 30191974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy.
    Tang Z; Wang P; Dong C; Zhang J; Wang X; Pei H
    Oxid Med Cell Longev; 2022; 2022():5913374. PubMed ID: 35103095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy.
    Xu Z; Sun J; Tong Q; Lin Q; Qian L; Park Y; Zheng Y
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27941647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes.
    Mandavia CH; Aroor AR; Demarco VG; Sowers JR
    Life Sci; 2013 Mar; 92(11):601-8. PubMed ID: 23147391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy.
    Peng ML; Fu Y; Wu CW; Zhang Y; Ren H; Zhou SS
    Front Endocrinol (Lausanne); 2022; 13():907757. PubMed ID: 35784531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Oxidative Stress in Metabolic and Subcellular Abnormalities in Diabetic Cardiomyopathy.
    Dhalla NS; Shah AK; Tappia PS
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid.
    Li CJ; Lv L; Li H; Yu DM
    Cardiovasc Diabetol; 2012 Jun; 11():73. PubMed ID: 22713251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.