BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35464136)

  • 1. Toward a modular, integrated, miniaturized, and portable microfluidic flow control architecture for organs-on-chips applications.
    Özkayar G; Lötters JC; Tichem M; Ghatkesar MK
    Biomicrofluidics; 2022 Mar; 16(2):021302. PubMed ID: 35464136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portable and integrated microfluidic flow control system using off-the-shelf components towards organs-on-chip applications.
    Zhu H; Özkayar G; Lötters J; Tichem M; Ghatkesar MK
    Biomed Microdevices; 2023 Jun; 25(2):19. PubMed ID: 37266714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian hormone control in a human-on-a-chip: In vitro biology's ignored component?
    Cyr KJ; Avaldi OM; Wikswo JP
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1714-1731. PubMed ID: 29065796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tiny Organs, Big Impact: How Microfluidic Organ-on-Chip Technology Is Revolutionizing Mucosal Tissues and Vasculature.
    Dasgupta I; Rangineni DP; Abdelsaid H; Ma Y; Bhushan A
    Bioengineering (Basel); 2024 May; 11(5):. PubMed ID: 38790343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
    Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P
    Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges.
    Zarrintaj P; Saeb MR; Stadler FJ; Yazdi MK; Nezhad MN; Mohebbi S; Seidi F; Ganjali MR; Mozafari M
    Adv Biol (Weinh); 2022 Jan; 6(1):e2000526. PubMed ID: 34837667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers.
    Khetani S; Yong KW; Ozhukil Kollath V; Eastick E; Azarmanesh M; Karan K; Sen A; Sanati-Nezhad A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6910-6923. PubMed ID: 31971367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods of Delivering Mechanical Stimuli to Organ-on-a-Chip.
    Kaarj K; Yoon JY
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31615136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation.
    Zommiti M; Connil N; Tahrioui A; Groboillot A; Barbey C; Konto-Ghiorghi Y; Lesouhaitier O; Chevalier S; Feuilloley MGJ
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36354557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A User-Centric 3D-Printed Modular Peristaltic Pump for Microfluidic Perfusion Applications.
    A Cataño J; Farthing S; Mascarenhas Z; Lake N; Yarlagadda PKDV; Li Z; Toh YC
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing of drugs using human feto-maternal interface organ-on-chips provide insights into pharmacokinetics and efficacy.
    Richardson LS; K Kammala A; Costantine MM; Fortunato SJ; Radnaa E; Kim S; Taylor RN; Han A; Menon R
    Lab Chip; 2022 Nov; 22(23):4574-4592. PubMed ID: 36322152
    [No Abstract]   [Full Text] [Related]  

  • 12. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico modeling of endocrine organ-on-a-chip systems.
    Sung B
    Math Biosci; 2022 Oct; 352():108900. PubMed ID: 36075288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Handheld Microflow Cytometer Based on a Motorized Smart Pipette, a Microfluidic Cell Concentrator, and a Miniaturized Fluorescence Microscope.
    Kim B; Kang D; Choi S
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31248214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Overview of Organs-on-Chips Based on Deep Learning.
    Li J; Chen J; Bai H; Wang H; Hao S; Ding Y; Peng B; Zhang J; Li L; Huang W
    Research (Wash D C); 2022; 2022():9869518. PubMed ID: 35136860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Polymers for Organ-on-Chip Technology in Urology.
    Galateanu B; Hudita A; Biru EI; Iovu H; Zaharia C; Simsensohn E; Costache M; Petca RC; Jinga V
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism.
    Zhang Y; Tseng TM; Schlichtmann U
    Sci Rep; 2021 Sep; 11(1):19189. PubMed ID: 34584118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-Driven Perfusion System to Control, Multiplex and Recirculate Cell Culture Medium for Organs-on-Chips.
    de Graaf MNS; Vivas A; van der Meer AD; Mummery CL; Orlova VV
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-memory microfluidic chips for fluid and droplet manipulation.
    Ye WQ; Zhang W; Xu ZR
    Biomicrofluidics; 2024 Mar; 18(2):021301. PubMed ID: 38566823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.